Git-SVN 抛弃:历史保留的SVN到Git迁移指南
项目介绍
Git-SVN 抛弃 是一个专为希望从Subversion(SVN)迁移到Git的开发者设计的历史保留迁移工具。该项目利用 git-svn 功能来实现平滑过渡,确保在转换过程中保持完整的提交历史,这对于保持代码库的完整性和追溯性至关重要。它由@nothingmuch开发并采用MIT许可协议发布。
项目快速启动
安装
首先,你需要安装 git-svn-abandon 工具。如果你是Homebrew的用户,在终端中运行以下命令:
brew install git-svn-abandon
如果不在Homebrew环境下,你可能需要手动下载源码并编译或通过其他包管理器完成安装。
迁移步骤
- 
克隆SVN仓库,假设你的SVN仓库地址是 https://example.com/repo/svnrepo, 使用git svn clone命令,并指定适当的分支前缀:git svn clone --prefix svn https://example.com/repo/svnrepo my-git-repo
- 
修正引用,进到新创建的Git仓库目录并执行脚本修复SVN的引用: cd my-git-repo git svn-abandon-fix-refs
- 
处理合并提交(如有必要),创建或编辑 git/info/grafts文件来处理SVN中的合并提交。
- 
清理,进行最后的清理工作以确保转换后的仓库干净无污染: git svn-abandon-cleanup
此时,你应该有一个干净的Git仓库,包含了所有SVN的历史,且所有的SVN标签被转换为Git的注解标签。
应用案例和最佳实践
在企业级代码库迁移场景中,Git-SVN 抛弃特别有用。当团队决定从SVN迁移至Git时,它可以保证迁移过程无损历史,这对于后续的代码审查、合规审计极其重要。最佳实践包括:
- 在开始迁移之前备份SVN仓库。
- 对大型仓库,先在一个小型副本上测试迁移流程。
- 确保正确处理了SVN中的复杂合并逻辑,以免丢失历史细节。
- 迁移完成后,通知团队成员停止对旧SVN仓库的更新,并开始使用新的Git仓库。
典型生态项目
虽然Git-SVN 抛弃本身就是一个用于特定目的的工具,其生态系统并不直接关联到其他特定的开源项目。然而,类似的工具如Sam Vilain的带有svn-merge-attrs分支的git-svn,或是Snerp Vortex(rcaputo/snerp-vortex)提供了不同的解决方案和特性,这些工具共同构建了一个围绕版本控制系统迁移的强大生态,支持开发者根据具体需求选择最适合自己的工具。
此指南旨在提供简明扼要的迁移指导,实践过程中应参考最新的官方文档和社区经验分享,以获得最佳结果。
 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选
 docs
docs kernel
kernel flutter_flutter
flutter_flutter ops-math
ops-math pytorch
pytorch cangjie_tools
cangjie_tools ohos_react_native
ohos_react_native RuoYi-Vue3
RuoYi-Vue3 torchair
torchair cangjie_compiler
cangjie_compiler