ByConity聚合查询优化器异常问题分析与解决方案
问题背景
在使用ByConity数据库系统执行包含多个聚合函数的查询时,系统可能会抛出std::out_of_range异常,错误信息显示为"unordered_map::at: key not found"。这种情况通常发生在同时使用any()函数和count(distinct)函数的聚合查询中。
问题复现
该问题可以通过以下SQL查询复现:
CREATE TABLE test
(
id String,
t1 DateTime,
t2 DateTime,
foo String
)
ENGINE = CnchMergeTree
PRIMARY KEY id
ORDER BY id;
SELECT
toYYYYMM(t1) as dateTime,
any(foo),
count(distinct id)
from
test
group by
dateTime;
技术分析
从错误堆栈可以看出,问题发生在查询优化阶段,具体是在MultipleDistinctAggregationToExpandAggregate优化规则执行过程中。该优化规则负责处理包含多个DISTINCT聚合函数的查询优化。
根本原因
-
优化器逻辑缺陷:当查询同时包含普通聚合函数(如any())和DISTINCT聚合函数(如count(distinct))时,优化器在生成执行计划时未能正确处理这种混合情况。
-
映射表查找失败:优化器在处理非DISTINCT聚合函数时,尝试从一个内部映射表中查找相关信息,但由于逻辑错误导致查找失败。
-
版本兼容性:该问题在ByConity 21.8.7.1版本中存在,但在后续版本中已得到修复。
解决方案
临时解决方案
对于当前版本的用户,可以通过以下设置临时规避此问题:
SET enable_expand_distinct_optimization = 0;
这个设置会禁用特定的查询优化规则,虽然可能影响某些复杂聚合查询的性能,但可以确保查询正常执行。
长期解决方案
-
升级版本:建议升级到已修复该问题的ByConity后续版本。
-
查询重写:对于必须使用当前版本的情况,可以考虑重写查询,将多个聚合操作拆分为多个子查询,然后通过JOIN合并结果。
最佳实践建议
-
测试环境验证:在生产环境执行复杂聚合查询前,建议先在测试环境验证查询的正确性。
-
监控优化器行为:对于关键业务查询,可以记录并分析查询执行计划,确保优化器行为符合预期。
-
版本升级策略:定期评估数据库版本升级计划,及时获取官方修复和改进。
总结
ByConity在处理混合类型聚合查询时出现的这个优化器异常,反映了查询优化器在复杂场景下的边界条件处理问题。通过理解问题本质和掌握解决方案,用户可以有效地规避或解决这一问题,确保业务查询的稳定执行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00