ByConity聚合查询优化器异常问题分析与解决方案
问题背景
在使用ByConity数据库系统执行包含多个聚合函数的查询时,系统可能会抛出std::out_of_range异常,错误信息显示为"unordered_map::at: key not found"。这种情况通常发生在同时使用any()函数和count(distinct)函数的聚合查询中。
问题复现
该问题可以通过以下SQL查询复现:
CREATE TABLE test
(
id String,
t1 DateTime,
t2 DateTime,
foo String
)
ENGINE = CnchMergeTree
PRIMARY KEY id
ORDER BY id;
SELECT
toYYYYMM(t1) as dateTime,
any(foo),
count(distinct id)
from
test
group by
dateTime;
技术分析
从错误堆栈可以看出,问题发生在查询优化阶段,具体是在MultipleDistinctAggregationToExpandAggregate优化规则执行过程中。该优化规则负责处理包含多个DISTINCT聚合函数的查询优化。
根本原因
-
优化器逻辑缺陷:当查询同时包含普通聚合函数(如any())和DISTINCT聚合函数(如count(distinct))时,优化器在生成执行计划时未能正确处理这种混合情况。
-
映射表查找失败:优化器在处理非DISTINCT聚合函数时,尝试从一个内部映射表中查找相关信息,但由于逻辑错误导致查找失败。
-
版本兼容性:该问题在ByConity 21.8.7.1版本中存在,但在后续版本中已得到修复。
解决方案
临时解决方案
对于当前版本的用户,可以通过以下设置临时规避此问题:
SET enable_expand_distinct_optimization = 0;
这个设置会禁用特定的查询优化规则,虽然可能影响某些复杂聚合查询的性能,但可以确保查询正常执行。
长期解决方案
-
升级版本:建议升级到已修复该问题的ByConity后续版本。
-
查询重写:对于必须使用当前版本的情况,可以考虑重写查询,将多个聚合操作拆分为多个子查询,然后通过JOIN合并结果。
最佳实践建议
-
测试环境验证:在生产环境执行复杂聚合查询前,建议先在测试环境验证查询的正确性。
-
监控优化器行为:对于关键业务查询,可以记录并分析查询执行计划,确保优化器行为符合预期。
-
版本升级策略:定期评估数据库版本升级计划,及时获取官方修复和改进。
总结
ByConity在处理混合类型聚合查询时出现的这个优化器异常,反映了查询优化器在复杂场景下的边界条件处理问题。通过理解问题本质和掌握解决方案,用户可以有效地规避或解决这一问题,确保业务查询的稳定执行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00