ByConity聚合查询优化器异常问题分析与解决方案
问题背景
在使用ByConity数据库系统执行包含多个聚合函数的查询时,系统可能会抛出std::out_of_range异常,错误信息显示为"unordered_map::at: key not found"。这种情况通常发生在同时使用any()函数和count(distinct)函数的聚合查询中。
问题复现
该问题可以通过以下SQL查询复现:
CREATE TABLE test
(
id String,
t1 DateTime,
t2 DateTime,
foo String
)
ENGINE = CnchMergeTree
PRIMARY KEY id
ORDER BY id;
SELECT
toYYYYMM(t1) as dateTime,
any(foo),
count(distinct id)
from
test
group by
dateTime;
技术分析
从错误堆栈可以看出,问题发生在查询优化阶段,具体是在MultipleDistinctAggregationToExpandAggregate优化规则执行过程中。该优化规则负责处理包含多个DISTINCT聚合函数的查询优化。
根本原因
-
优化器逻辑缺陷:当查询同时包含普通聚合函数(如any())和DISTINCT聚合函数(如count(distinct))时,优化器在生成执行计划时未能正确处理这种混合情况。
-
映射表查找失败:优化器在处理非DISTINCT聚合函数时,尝试从一个内部映射表中查找相关信息,但由于逻辑错误导致查找失败。
-
版本兼容性:该问题在ByConity 21.8.7.1版本中存在,但在后续版本中已得到修复。
解决方案
临时解决方案
对于当前版本的用户,可以通过以下设置临时规避此问题:
SET enable_expand_distinct_optimization = 0;
这个设置会禁用特定的查询优化规则,虽然可能影响某些复杂聚合查询的性能,但可以确保查询正常执行。
长期解决方案
-
升级版本:建议升级到已修复该问题的ByConity后续版本。
-
查询重写:对于必须使用当前版本的情况,可以考虑重写查询,将多个聚合操作拆分为多个子查询,然后通过JOIN合并结果。
最佳实践建议
-
测试环境验证:在生产环境执行复杂聚合查询前,建议先在测试环境验证查询的正确性。
-
监控优化器行为:对于关键业务查询,可以记录并分析查询执行计划,确保优化器行为符合预期。
-
版本升级策略:定期评估数据库版本升级计划,及时获取官方修复和改进。
总结
ByConity在处理混合类型聚合查询时出现的这个优化器异常,反映了查询优化器在复杂场景下的边界条件处理问题。通过理解问题本质和掌握解决方案,用户可以有效地规避或解决这一问题,确保业务查询的稳定执行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00