Drgn项目内核模块内存布局变更解析:从连续分配到分段存储
2025-07-07 16:19:39作者:邬祺芯Juliet
背景概述
在Linux内核调试工具Drgn的使用过程中,开发者发现了一个重要问题:自Linux内核6.4版本开始,内核模块的内存布局发生了根本性变化。这一变更影响了Drgn中prog.module(address)和prog.symbol(address)等核心功能对内核模块数据的定位能力。
技术细节解析
传统内存布局方式
在Linux内核6.4版本之前,每个内核模块的内存分配是作为一个连续的块来处理的。这意味着:
- 整个模块的代码(text)、数据(data)、只读数据(rodata)等都位于一个连续的内存区域
- 调试工具可以通过简单的地址范围检查就能确定某个地址是否属于特定模块
6.4版本后的新布局
内核提交ac3b43283923440900b4f36ca5f9f0b1ca43b70e引入了重大变更:
- 分段分配:模块内存现在按类型(text/data/rodata等)被分割成多个独立的内存段
- 交错存储:不同模块的同类型内存段可能交错分布在内存地址空间中
- 动态扩展:这种设计允许更灵活的内存管理,但增加了调试的复杂性
对Drgn的影响
Drgn原有的实现(提交3f3a957)仅考虑了模块的MOD_TEXT段,导致:
- 只能正确识别模块的代码(text)段地址
- 无法识别模块的数据(data)和只读数据(rodata)段
- 模块地址查询和符号解析功能出现部分失效
解决方案分析
Drgn维护者osandov提出了解决方案:
- 扩展数据结构:将
Module.address_range扩展为Module.address_ranges - 多段支持:记录模块所有内存类型(text/data/rodata等)的地址范围
- 全面查询:在模块查找时检查所有相关内存段
技术实现示例
通过示例代码可以清晰看到新布局的特点:
rng_core MOD_DATA 0xffffffffc008f000 0x2000
rng_core MOD_RODATA 0xffffffffc0092000 0x1000
virtio_rng MOD_DATA 0xffffffffc0097000 0x1000
virtio_rng MOD_RODATA 0xffffffffc0099000 0x1000
binfmt_misc MOD_DATA 0xffffffffc009d000 0x1000
binfmt_misc MOD_RODATA 0xffffffffc009f000 0x1000
rng_core MOD_TEXT 0xffffffffc0204000 0x1000
virtio_rng MOD_TEXT 0xffffffffc0207000 0x1000
binfmt_misc MOD_TEXT 0xffffffffc020a000 0x1000
从输出可见:
- 同模块的不同段分布在非连续地址空间
- 不同模块的同类型段交错分布
- 代码段(text)与其他段有明显分离
对开发者的影响
这一变更要求开发者:
- 更新对内核模块内存布局的理解
- 检查依赖模块地址查询的调试脚本
- 等待或使用包含修复的Drgn版本
总结
Linux内核6.4版本对模块内存管理的改进虽然提升了灵活性,但对调试工具提出了新的挑战。Drgn项目通过扩展地址范围记录机制,有效适应了这一变更,展现了优秀调试工具对内核演进的快速响应能力。这一案例也提醒我们,在复杂系统软件开发中,调试工具的维护同样需要紧跟核心系统的架构变化。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
316
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K