LMDeploy 项目中的 Torch 2.5.1 兼容性问题解析
在深度学习模型部署领域,LMDeploy 作为一个高效的工具包,其与 PyTorch 版本的兼容性一直是开发者关注的重点。近期,LMDeploy 官方放宽了对 PyTorch 版本的限制,从原先的 2.4.0 升级到了 2.5.1,这一变化引发了一些安装和使用上的问题。
问题背景
当用户尝试通过 pip 从源代码安装 LMDeploy 时,系统会自动将已安装的 PyTorch 2.5.1 降级到 2.4.0 版本。这一现象源于 LMDeploy 的依赖关系中,torchvision 的版本限制尚未同步更新到与 PyTorch 2.5.1 兼容的版本。
解决方案
经过项目维护者的确认和修复,现在可以通过以下两种方式解决该问题:
-
使用传统依赖解析器安装
通过添加--use-deprecated=legacy-resolver参数,可以绕过 pip 的新依赖解析机制,避免自动降级 PyTorch 版本:pip install "git+https://github.com/InternLM/lmdeploy.git@main" -U --use-deprecated=legacy-resolver --extra-index-url https://download.pytorch.org/whl/cu124 -
手动安装兼容版本
确保同时安装 PyTorch 2.5.1 和兼容的 torchvision 0.20.1 版本:pip3 install torch==2.5.1 torchvision==0.20.1 torchaudio --index-url https://download.pytorch.org/whl/cu124
注意事项
在安装过程中,可能会遇到关于 triton 版本的警告信息。目前 LMDeploy 固定使用 triton 3.0.0 版本,虽然与 PyTorch 2.5.1 推荐的 triton 3.1.0 存在版本差异,但经过测试表明 triton 3.0.0 仍能正常工作。
对于需要使用 turbomind 引擎的用户,需要注意:
- 预编译的 wheel 包或 nightly 构建包中可能不包含所有环境配置
- 如果找不到合适的预编译包,需要从源代码构建 turbomind 引擎
- 直接从源码安装可能会导致只能使用 PyTorch 引擎的警告
未来展望
LMDeploy 团队正在计划将 triton 升级到 3.1.0 版本,但需要进行全面的测试以确保兼容性。建议开发者关注项目更新,以获取最新的兼容性支持。
通过理解这些兼容性问题和解决方案,开发者可以更顺利地在新环境中部署和使用 LMDeploy,充分发挥其模型部署的高效能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00