Apache Cotton 技术文档
1. 安装指南
Apache Cotton 是一个运行在 Apache Mesos 上的 MySQL 实例框架。为了安装 Cotton,您需要以下环境:
- Python 2.7
- Mesos Python 绑定
首先,从 Apache 的 git 仓库克隆 Cotton 代码:
git clone https://git-wip-us.apache.org/repos/asf/incubator-cotton.git
或者,如果您更喜欢 GitHub,可以使用 GitHub 镜像:
git clone https://github.com/apache/incubator-cotton.git
Cotton 使用 Mesos Python 绑定,包括两个 Python 包。mesos.interface 可以从 PyPI 自动安装,而 mesos.native 是平台依赖的。您需要在您的机器上构建这个包(构建指南)或者下载一个为您的平台编译的包。
由于 pip 不支持 eggs,您需要使用 wheel convert 将 eggs 转换成 wheels,然后将其放入 3rdparty 文件夹。更多相关信息,请查看 README 文件。
2. 项目使用说明
Cotton 主要由两个组件组成:mysos_scheduler 和 mysos_executor。mysos_scheduler 连接到 Mesos master 并管理 MySQL 集群,mysos_executor 由 Mesos slave(根据 mysos_scheduler 的请求)启动以执行 MySQL 任务。
您可以使用 PEX 将这些组件及其依赖项打包成一个自包含的可执行文件,以便快速可靠地启动 Cotton 组件。
3. 项目API使用文档
Cotton 的 API 使用文档目前尚未提供详细说明。您可以通过阅读源代码和项目社区资源来了解更多信息。
4. 项目安装方式
Cotton 的安装主要通过克隆仓库源代码,然后构建和部署相关组件。以下是主要步骤:
- 克隆 Cotton 代码仓库。
- 构建或下载 Mesos Python 绑定并将其放入
3rdparty文件夹。 - 使用 PEX 将 Cotton 组件打包成可执行文件。
有关构建和测试的更多详细步骤,请参考以下部分。
构建和测试
单元测试
确保已安装 tox,然后运行以下命令:
tox
单元测试不需要 3rdparty 中的 mesos.native 包。Tox 会构建 Cotton 源码包并将其放入 .tox/dist。
在本地 Mesos 集群和 PEX 上进行端到端测试
构建/下载 mesos.native 包并放入 3rdparty,然后运行以下命令:
tox -e pex
此测试展示了如何打包 PEX 执行器并使用它在一个本地 Mesos 集群上启动一个模拟的 MySQL 集群。
在 Vagrant 虚拟机中的真实 Mesos 集群上进行端到端测试
Vagrant 测试使用 .tox/dist 中的 sdist Cotton 包,因此请确保首先运行 tox。然后执行以下操作:
vagrant up
等待 VM 和 Cotton API 端点启动(http://192.168.33.17:55001 变得可用)。
tox -e vagrant
test.sh 脚本会验证 Cotton 是否成功创建并删除了 MySQL 集群。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00