解决k3s-ansible在NFS启动的Raspberry Pi集群中安装失败问题
问题背景
在使用k3s-ansible项目部署基于Raspberry Pi的Kubernetes集群时,用户遇到了安装过程中断的问题。集群采用PXE/NFS启动方式,运行Raspbian Bookworm系统,但在安装过程中会卡在验证节点加入的步骤。
错误现象
安装过程中出现的主要错误信息表明k3s无法连接到API服务器:
E0313 09:04:56.220830 3672 memcache.go:265] couldn't get current server API group list: Get "http://localhost:8080/api?timeout=32s": dial tcp [::1]:8080: connect: connection refused
手动检查节点状态时,kubectl get nodes命令返回"未找到资源",表明集群未能正确初始化。
根本原因分析
通过深入检查k3s-init服务的日志,发现了关键错误信息:
Failed to record snapshots for cluster: nodes "valhalla1" not found
进一步调查发现,这与NFS文件系统和containerd存储驱动之间的兼容性问题有关。在NFS挂载的根文件系统上,默认的overlay存储驱动无法正常工作,导致容器运行时无法正确启动,进而影响了整个Kubernetes集群的初始化过程。
解决方案
解决此问题需要两个步骤:
-
安装fuse-overlayfs:在每台Raspberry Pi节点上执行以下命令安装必要的软件包:
sudo apt-get install fuse-overlayfs -
修改k3s配置:在k3s-ansible的配置文件中,向
extra_server_args添加以下参数:--snapshotter=fuse-overlayfs
这个解决方案通过使用fuse-overlayfs作为容器存储驱动,绕过了NFS环境下overlayfs的限制,使containerd能够在NFS挂载的文件系统上正常工作。
技术细节
fuse-overlayfs简介
fuse-overlayfs是一个用户空间文件系统,它提供了与overlayfs类似的功能,但通过FUSE实现。相比内核空间的overlayfs,它有以下优势:
- 不需要特定的内核支持
- 对底层文件系统类型限制较少
- 在NFS等特殊文件系统上表现更好
为什么NFS需要特殊处理
在NFS挂载的文件系统上直接使用overlayfs会遇到以下问题:
- NFS的某些特性与overlayfs不兼容
- 权限和用户命名空间处理方式不同
- 文件锁机制可能存在冲突
fuse-overlayfs通过用户空间实现解决了这些问题,为容器提供了稳定的存储后端。
最佳实践建议
对于类似环境的部署,建议:
- 在NFS启动的系统上总是考虑使用fuse-overlayfs
- 在集群部署前预先安装必要的软件包
- 监控容器运行时的日志以确保存储驱动正常工作
- 考虑在Ansible playbook中添加对NFS环境的自动检测和配置
总结
通过使用fuse-overlayfs作为容器存储驱动,成功解决了k3s-ansible在NFS启动的Raspberry Pi集群上的安装问题。这个案例展示了在特殊环境下部署Kubernetes时,理解底层存储技术的重要性,以及如何通过适当的配置调整来解决兼容性问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00