探秘DaViT:双注意力视觉Transformer的革命性突破
在计算机视觉领域,Transformer架构正在逐渐成为研究焦点,尤其是其在图像理解和处理任务中的强大潜力。作为这一领域的最新进展,DaViT(Dual Attention Vision Transformer)带来了前所未有的创新,它在保持高效计算的同时,能够捕捉全局上下文并强化局部表示。这个开源项目由Mingyu Ding等人在ECCV 2022上提出,并已经在GitHub上公开了官方实现。
项目简介
DaViT的核心是引入了“空间令牌”和“通道令牌”的双重注意力机制,这使得模型能够在抽象层面上理解全球信息,同时通过精细化的空间交互增强局部特征。简而言之,它将自注意力与两种令牌相结合,以平衡全局信息捕获与高效计算之间的关系。

项目提供了完整的训练和验证脚本,支持图像分类、目标检测和语义分割四大任务,并已实现在多个基准上的优秀性能。无需额外数据,DaViT-Tiny、DaViT-Small和DaViT-Base分别在ImageNet-1K上达到82.8%,84.2%和84.6%的Top-1准确率,而当进一步扩展到大型模型时,DaViT-Giant的性能更是达到了90.4%。
技术分析
DaViT的关键在于它的双重注意力设计。首先,通过通道注意力,每个通道令牌可以捕获全图的信息,从而进行全局交互和表示学习。其次,空间注意力则负责精炼局部表示,通过细粒度的跨位置交互来提升全局信息建模。这种结合方式兼顾全局视野与局部精细,使得模型在效率和效果之间找到了完美的平衡。
应用场景
- 图像分类:利用DaViT的全局和局部理解能力,可以更准确地识别复杂图像。
- 目标检测:通过对图像进行深入理解,提高检测精度,尤其对于小目标和密集场景。
- 实例分割:精确地划分出图像中的每个对象,提供高质量的分割结果。
- 语义分割:预测图像中每个像素的类别,助力高分辨率场景的理解。
项目特点
- 高效:在保持高性能的同时,DaViT优化了计算资源的使用。
- 全面:不仅支持图像分类,还涵盖目标检测和语义分割等多种任务。
- 可扩展:从小型到大型,模型规模和性能均可按需调整。
- 易用:清晰的代码结构,详尽的文档,快速启动训练和评估。
要开始使用DaViT,只需安装指定版本的Python、PyTorch、torchvision等库,然后按照提供的示例脚本配置环境和运行命令。无论是单机多卡还是分布式训练,项目都提供了详细的指导。
最后,值得注意的是,较大的图像分类模型将在单独的仓库中发布,为开发者提供了更多的灵活性和选择。如果你对视觉任务有热情,或是希望深入探索Transformer的潜力,那么DaViT绝对值得你的关注。现在就加入这个社区,一起推动计算机视觉的边界吧!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00