Semantic Kernel中的ModelContextProtocol(MCP)功能改进与最佳实践
2025-05-08 04:31:29作者:魏侃纯Zoe
什么是ModelContextProtocol(MCP)
ModelContextProtocol(MCP)是Semantic Kernel项目中一个重要的组件,它提供了一种标准化的方式来连接和调用各种AI模型和服务。MCP通过定义统一的协议规范,使得不同来源的模型能够以一致的方式被集成和使用。
当前实现中的问题与改进
在Semantic Kernel的.NET实现中,MCP示例代码存在几个需要改进的地方:
-
参数类型转换问题:现有的ToArgumentValue方法在处理非可空整数和双精度浮点数时存在缺陷。正确的实现应该能够处理以下类型转换:
- 可空整数(int?)
- 可空双精度浮点数(double?)
- 非可空整数(int)
- 非可空双精度浮点数(double)
- 布尔值(bool)
- 字符串列表(List)
- 字典(Dictionary<string, object>)
-
认证信息集成:当前示例没有展示如何将GitHub个人访问令牌(PAT)等认证信息集成到MCP配置中,这使得许多需要认证的工具无法正常使用。
改进后的参数转换实现
以下是经过改进的参数转换方法实现,它能够正确处理各种基本数据类型:
private static object ToArgumentValue(this KernelFunction function, string name, object value)
{
var parameter = function.Metadata.Parameters.FirstOrDefault(p => p.Name == name);
return parameter?.ParameterType switch
{
Type t when Nullable.GetUnderlyingType(t) == typeof(int) => Convert.ToInt32(value),
Type t when Nullable.GetUnderlyingType(t) == typeof(double) => Convert.ToDouble(value),
Type t when t == typeof(double) => Convert.ToDouble(value),
Type t when t == typeof(int) => Convert.ToInt32(value),
Type t when Nullable.GetUnderlyingType(t) == typeof(bool) => Convert.ToBoolean(value),
Type t when t == typeof(List<string>) => (value as IEnumerable<object>)?.ToList(),
Type t when t == typeof(Dictionary<string, object>) => (value as Dictionary<string, object>)?.ToDictionary(kvp => kvp.Key, kvp => kvp.Value),
_ => value,
} ?? value;
}
认证信息集成方法
要将认证信息如GitHub PAT集成到MCP配置中,可以使用以下配置方式:
var config = new McpServerConfig
{
Id = "github",
Name = "GitHub",
TransportType = "stdio",
TransportOptions = new Dictionary<string, string>
{
["command"] = "npx",
["arguments"] = "-y @modelcontextprotocol/server-github",
["env:GITHUB_PERSONAL_ACCESS_TOKEN"] = "your_github_pat_here"
}
};
未来发展方向
Semantic Kernel团队正在开发官方的.NET MCP包,这将简化MCP的集成和使用。未来的版本可能会提供:
- 更简洁的API接口
- 内置的类型转换支持
- 更完善的认证管理机制
- 更丰富的工具集成
最佳实践建议
- 在使用MCP时,始终验证输入参数的类型和值
- 对于需要认证的服务,确保认证信息的安全存储和传输
- 考虑使用环境变量或安全存储来管理敏感信息
- 为不同的服务创建独立的MCP配置实例
- 定期检查官方更新,获取最新的功能和改进
通过遵循这些最佳实践,开发者可以更高效地利用MCP来集成各种AI模型和服务,构建更强大的应用。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1