lm-evaluation-harness项目中BBH数据集本地运行解决方案
在自然语言处理领域,Big-Bench Hard(BBH)是一个重要的评估基准数据集,用于测试模型在复杂推理任务上的表现。本文将深入探讨如何在lm-evaluation-harness项目中正确配置和运行BBH数据集。
BBH数据集结构特点
BBH数据集由多个子任务组成,每个子任务针对不同的推理能力进行评估。原始数据集采用脚本方式加载,但这种方式在某些环境下可能存在兼容性问题。数据集还提供了Parquet格式的分支版本,这种列式存储格式具有更高的读取效率。
本地运行面临的问题
当尝试使用Parquet格式分支时,会遇到一个关键问题:所有子任务会被合并为单一的"default"子集,导致无法针对特定子任务进行评估。这是因为Parquet分支没有保留原始数据集中的子任务划分结构。
解决方案探索
经过实践验证,我们发现以下两种方法可以解决这一问题:
- 
使用替代数据集源:推荐使用专门为lm-evaluation-harness优化过的数据集版本,该版本为每个子任务单独提供了Parquet文件,完美保留了原始的子任务结构。
 - 
单任务评估模式:如果只需要评估特定子任务,可以修改配置文件,注释掉其他任务,并将目标子任务的dataset_name改为"default"。这种方法虽然可行,但需要注意评估结果可能不够全面。
 
配置建议
对于需要完整评估的用户,建议采用第一种方案。在配置文件中,可以这样设置:
dataset_path: /path/to/optimized/bbh/dataset
对于只需要部分评估的用户,可以采用第二种方案,但需要注意:
- 注释掉不需要的任务
 - 修改目标任务的dataset_name
 - 理解这种方式的局限性
 
性能考量
使用Parquet格式相比原始脚本加载方式,在数据读取速度上有显著优势,特别适合大规模评估场景。优化后的数据集版本在保持性能优势的同时,还解决了子任务识别问题,是较为理想的解决方案。
结论
在lm-evaluation-harness项目中正确运行BBH数据集需要考虑数据格式和子任务结构的兼容性。通过选择合适的替代数据集源或调整评估策略,可以有效解决本地运行中的各种问题。建议用户根据实际需求选择最适合的方案,以获得准确可靠的评估结果。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00