Expensify/App Android端测试驾驶功能加载问题分析与解决方案
问题背景
在Expensify移动应用的Android版本中,用户在进行测试驾驶流程时遇到了一个关键性问题。当用户完成邮箱输入并点击"开始测试驾驶"按钮后,界面会陷入无限加载状态,无法正常进入后续的测试收据提交环节。这个问题在Android 14系统的三星Galaxy Z Fold 4设备上被首次发现并报告。
问题现象
用户操作路径如下:
- 启动Expensify应用
- 使用新Gmail账户登录
- 跳过工作邮箱页面
- 选择"跟踪和预算支出"功能
- 输入姓名并继续
- 在"带我们进行测试驾驶"模态框中输入邮箱
- 点击开始测试驾驶按钮
预期行为是应用应进入确认页面,向用户提交测试收据。但实际观察到的却是按钮持续加载,无法完成流程。
技术分析
经过开发团队深入排查,发现问题根源在于Android原生环境下处理静态资源的方式存在差异。具体表现为:
-
在调试模式下,
resolveAssetSource方法能够正确返回形如http://localhost:8081/xxxx的URI,使得文件下载流程可以正常进行。 -
但在发布模式下,
resolveAssetSource仅返回静态资源名称(如asset_1234),而非有效的URI地址。这导致react-native-blob-util无法正确下载文件。
日志分析显示以下关键错误信息:
java.net.MalformedURLException: no protocol- 表明URL格式不正确url == null- 表明请求构建时缺少有效URL- 客户端日志显示"Error reading test receipt" - 确认收据读取失败
解决方案
针对这一问题,开发团队提出了基于expo-file-system和expo-asset的替代方案:
-
使用
expo-asset的Asset.loadAsync方法加载资源,该方法能正确处理Android环境下的静态资源。 -
通过
expo-file-system的copyAsync方法将资源复制到本地文件系统,确保在调试和发布模式下都能正常工作。
核心代码修改包括:
- 替换原有的
resolveAssetSource和react-native-blob-util组合 - 实现新的文件处理逻辑,正确处理本地URI
- 添加完善的错误处理机制
兼容性考虑
值得注意的是,此问题不仅影响测试驾驶功能,也影响了McManager流程中的工具提示功能。经过版本回溯测试,发现该问题实际上自McManager测试功能发布(版本9.1.14-5)以来就一直存在。
解决方案特意针对Android平台进行了优化,同时保持iOS等其他平台的现有实现不变,确保不会引入新的兼容性问题。
总结
这个案例展示了React Native在跨平台开发中可能遇到的特定平台问题。通过深入分析Android资源加载机制,开发团队找到了既解决当前问题又保持代码简洁性的方案。这也提醒开发者在处理平台特定功能时,需要充分考虑不同构建模式下的行为差异。
该修复已随版本9.1.52-0部署到生产环境,经过7天回归测试后确认稳定,最终在版本9.1.53-7中完全解决。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00