Expensify/App Android端测试驾驶功能加载问题分析与解决方案
问题背景
在Expensify移动应用的Android版本中,用户在进行测试驾驶流程时遇到了一个关键性问题。当用户完成邮箱输入并点击"开始测试驾驶"按钮后,界面会陷入无限加载状态,无法正常进入后续的测试收据提交环节。这个问题在Android 14系统的三星Galaxy Z Fold 4设备上被首次发现并报告。
问题现象
用户操作路径如下:
- 启动Expensify应用
- 使用新Gmail账户登录
- 跳过工作邮箱页面
- 选择"跟踪和预算支出"功能
- 输入姓名并继续
- 在"带我们进行测试驾驶"模态框中输入邮箱
- 点击开始测试驾驶按钮
预期行为是应用应进入确认页面,向用户提交测试收据。但实际观察到的却是按钮持续加载,无法完成流程。
技术分析
经过开发团队深入排查,发现问题根源在于Android原生环境下处理静态资源的方式存在差异。具体表现为:
-
在调试模式下,
resolveAssetSource方法能够正确返回形如http://localhost:8081/xxxx的URI,使得文件下载流程可以正常进行。 -
但在发布模式下,
resolveAssetSource仅返回静态资源名称(如asset_1234),而非有效的URI地址。这导致react-native-blob-util无法正确下载文件。
日志分析显示以下关键错误信息:
java.net.MalformedURLException: no protocol- 表明URL格式不正确url == null- 表明请求构建时缺少有效URL- 客户端日志显示"Error reading test receipt" - 确认收据读取失败
解决方案
针对这一问题,开发团队提出了基于expo-file-system和expo-asset的替代方案:
-
使用
expo-asset的Asset.loadAsync方法加载资源,该方法能正确处理Android环境下的静态资源。 -
通过
expo-file-system的copyAsync方法将资源复制到本地文件系统,确保在调试和发布模式下都能正常工作。
核心代码修改包括:
- 替换原有的
resolveAssetSource和react-native-blob-util组合 - 实现新的文件处理逻辑,正确处理本地URI
- 添加完善的错误处理机制
兼容性考虑
值得注意的是,此问题不仅影响测试驾驶功能,也影响了McManager流程中的工具提示功能。经过版本回溯测试,发现该问题实际上自McManager测试功能发布(版本9.1.14-5)以来就一直存在。
解决方案特意针对Android平台进行了优化,同时保持iOS等其他平台的现有实现不变,确保不会引入新的兼容性问题。
总结
这个案例展示了React Native在跨平台开发中可能遇到的特定平台问题。通过深入分析Android资源加载机制,开发团队找到了既解决当前问题又保持代码简洁性的方案。这也提醒开发者在处理平台特定功能时,需要充分考虑不同构建模式下的行为差异。
该修复已随版本9.1.52-0部署到生产环境,经过7天回归测试后确认稳定,最终在版本9.1.53-7中完全解决。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00