使用ggplot2进行数据可视化设计:天气类型与自行车共享量的分布分析
2025-06-02 11:36:25作者:魏侃纯Zoe
前言
在数据可视化领域,ggplot2作为R语言中最强大的绘图系统之一,提供了丰富的图形语法和灵活的定制能力。本文基于rstudio-conf-2022中关于ggplot2图形设计的研讨会材料,重点讲解如何使用不同类型的图表展示伦敦自行车共享数据中不同天气条件下的使用量分布。
数据准备
首先我们需要导入并预处理数据:
# 导入伦敦自行车共享数据
bikes <- readr::read_csv("london-bikes-custom.csv",
col_types = "Dcfffilllddddc")
# 将季节因子按顺序排列
bikes$season <- forcats::fct_inorder(bikes$season)
library(tidyverse)
基础箱线图分析
最简单的分布可视化方式是使用箱线图:
ggplot(bikes, aes(x = weather_type, y = count)) +
geom_boxplot()
这个基础图表展示了不同天气类型下自行车使用量的分布情况,但存在两个问题:
- 天气类型标签重叠
- 图表缺乏必要的修饰
图表优化技巧
1. 解决标签重叠问题
有三种常用方法解决x轴标签重叠:
方法一:交换x和y轴
ggplot(bikes, aes(x = count, y = weather_type)) +
geom_boxplot()
方法二:使用str_wrap自动换行
ggplot(bikes, aes(x = stringr::str_wrap(weather_type, 6), y = count)) +
geom_boxplot()
2. 主题设置与美化
# 设置基础主题
theme_set(theme_minimal(
base_size = 14,
base_family = "Roboto Condensed"
))
# 自定义主题元素
theme_update(
panel.grid.major.x = element_blank(),
panel.grid.minor = element_blank(),
plot.title.position = "plot"
)
# 添加标题和标签
ggplot(bikes, aes(x = stringr::str_wrap(weather_type, 6), y = count)) +
geom_boxplot() +
ggtitle("Reported bike shares by weather type")
高级可视化技术
1. 抖动散点图(Jitter Plot)
展示原始数据点的分布:
ggplot(bikes, aes(x = str_wrap(weather_type, 6), y = count)) +
geom_jitter(alpha = 0.2) +
ggtitle("Reported bike shares by weather type")
可以精确控制抖动参数:
geom_point(
position = position_jitter(
seed = 2022, # 设置随机种子保证可重复性
width = 0.2, # 水平抖动范围
height = 0 # 垂直不抖动
),
alpha = 0.2
)
2. 箱线图与散点图组合
结合箱线图的统计信息和散点图的原始数据展示:
ggplot(bikes, aes(x = str_wrap(weather_type, 6), y = count)) +
geom_boxplot(outlier.shape = NA) + # 隐藏箱线图的异常值点
geom_jitter(alpha = 0.2) +
ggtitle("Reported bike shares by weather type")
3. 按中位数排序
ggplot(bikes, aes(
x = forcats::fct_reorder(str_wrap(weather_type, 6), -count),
y = count)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(alpha = 0.2)
其他分布可视化方法
1. 蜂群图(Beeswarm Plot)
使用ggbeeswarm包可以创建更有序的点分布:
g +
geom_boxplot(outlier.shape = NA) +
ggbeeswarm::geom_beeswarm(
size = 0.3,
alpha = 0.2,
cex = 0.6 # 控制点间距
)
2. 小提琴图(Violin Plot)
展示分布的密度估计:
g +
geom_violin(
scale = "count", # 按样本量缩放宽度
draw_quantiles = c(0.5), # 标记中位数
fill = "grey80"
)
3. 雨云图(Raincloud Plot)
结合密度图、箱线图和原始数据点的综合展示:
g +
ggdist::stat_halfeye( # 半密度图
aes(thickness = stat(f*n)), # 按频数调整厚度
width = 0.5,
position = position_nudge(x = 0.2)
) +
geom_boxplot(width = 0.3) +
geom_jitter(width = 0.1, size = 0.5, alpha = 0.1)
图表保存
最后将图表保存为高质量矢量图:
ggsave("bike_shares_weather.pdf",
width = 5, height = 6.5, device = cairo_pdf)
总结
本文展示了使用ggplot2可视化分布数据的多种方法,从基础的箱线图到高级的雨云图,每种图表都有其适用场景:
- 箱线图:快速了解分布的关键统计量
- 抖动散点图:展示所有数据点的分布
- 蜂群图:有序展示数据点避免重叠
- 小提琴图:直观显示数据密度
- 雨云图:综合展示密度、统计量和原始数据
通过灵活运用这些技术,可以更全面、有效地展示数据分布特征,为数据分析提供更丰富的视角。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443