使用ggplot2进行数据可视化设计:天气类型与自行车共享量的分布分析
2025-06-02 19:49:14作者:魏侃纯Zoe
前言
在数据可视化领域,ggplot2作为R语言中最强大的绘图系统之一,提供了丰富的图形语法和灵活的定制能力。本文基于rstudio-conf-2022中关于ggplot2图形设计的研讨会材料,重点讲解如何使用不同类型的图表展示伦敦自行车共享数据中不同天气条件下的使用量分布。
数据准备
首先我们需要导入并预处理数据:
# 导入伦敦自行车共享数据
bikes <- readr::read_csv("london-bikes-custom.csv",
col_types = "Dcfffilllddddc")
# 将季节因子按顺序排列
bikes$season <- forcats::fct_inorder(bikes$season)
library(tidyverse)
基础箱线图分析
最简单的分布可视化方式是使用箱线图:
ggplot(bikes, aes(x = weather_type, y = count)) +
geom_boxplot()
这个基础图表展示了不同天气类型下自行车使用量的分布情况,但存在两个问题:
- 天气类型标签重叠
- 图表缺乏必要的修饰
图表优化技巧
1. 解决标签重叠问题
有三种常用方法解决x轴标签重叠:
方法一:交换x和y轴
ggplot(bikes, aes(x = count, y = weather_type)) +
geom_boxplot()
方法二:使用str_wrap自动换行
ggplot(bikes, aes(x = stringr::str_wrap(weather_type, 6), y = count)) +
geom_boxplot()
2. 主题设置与美化
# 设置基础主题
theme_set(theme_minimal(
base_size = 14,
base_family = "Roboto Condensed"
))
# 自定义主题元素
theme_update(
panel.grid.major.x = element_blank(),
panel.grid.minor = element_blank(),
plot.title.position = "plot"
)
# 添加标题和标签
ggplot(bikes, aes(x = stringr::str_wrap(weather_type, 6), y = count)) +
geom_boxplot() +
ggtitle("Reported bike shares by weather type")
高级可视化技术
1. 抖动散点图(Jitter Plot)
展示原始数据点的分布:
ggplot(bikes, aes(x = str_wrap(weather_type, 6), y = count)) +
geom_jitter(alpha = 0.2) +
ggtitle("Reported bike shares by weather type")
可以精确控制抖动参数:
geom_point(
position = position_jitter(
seed = 2022, # 设置随机种子保证可重复性
width = 0.2, # 水平抖动范围
height = 0 # 垂直不抖动
),
alpha = 0.2
)
2. 箱线图与散点图组合
结合箱线图的统计信息和散点图的原始数据展示:
ggplot(bikes, aes(x = str_wrap(weather_type, 6), y = count)) +
geom_boxplot(outlier.shape = NA) + # 隐藏箱线图的异常值点
geom_jitter(alpha = 0.2) +
ggtitle("Reported bike shares by weather type")
3. 按中位数排序
ggplot(bikes, aes(
x = forcats::fct_reorder(str_wrap(weather_type, 6), -count),
y = count)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(alpha = 0.2)
其他分布可视化方法
1. 蜂群图(Beeswarm Plot)
使用ggbeeswarm包可以创建更有序的点分布:
g +
geom_boxplot(outlier.shape = NA) +
ggbeeswarm::geom_beeswarm(
size = 0.3,
alpha = 0.2,
cex = 0.6 # 控制点间距
)
2. 小提琴图(Violin Plot)
展示分布的密度估计:
g +
geom_violin(
scale = "count", # 按样本量缩放宽度
draw_quantiles = c(0.5), # 标记中位数
fill = "grey80"
)
3. 雨云图(Raincloud Plot)
结合密度图、箱线图和原始数据点的综合展示:
g +
ggdist::stat_halfeye( # 半密度图
aes(thickness = stat(f*n)), # 按频数调整厚度
width = 0.5,
position = position_nudge(x = 0.2)
) +
geom_boxplot(width = 0.3) +
geom_jitter(width = 0.1, size = 0.5, alpha = 0.1)
图表保存
最后将图表保存为高质量矢量图:
ggsave("bike_shares_weather.pdf",
width = 5, height = 6.5, device = cairo_pdf)
总结
本文展示了使用ggplot2可视化分布数据的多种方法,从基础的箱线图到高级的雨云图,每种图表都有其适用场景:
- 箱线图:快速了解分布的关键统计量
- 抖动散点图:展示所有数据点的分布
- 蜂群图:有序展示数据点避免重叠
- 小提琴图:直观显示数据密度
- 雨云图:综合展示密度、统计量和原始数据
通过灵活运用这些技术,可以更全面、有效地展示数据分布特征,为数据分析提供更丰富的视角。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
422
3.25 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869