FreeSql中使用Where方法进行LIKE查询的注意事项
问题背景
在使用FreeSql进行数据库操作时,开发人员经常会遇到需要使用LIKE进行模糊查询的场景。特别是在处理字符串字段的包含关系时,LIKE查询显得尤为重要。然而,在使用FreeSql的Where方法结合LIKE操作符时,有一个常见的陷阱需要注意。
问题现象
开发人员尝试使用以下方式构建LIKE查询:
var list = fsql.Select<object>()
.AsType(table.Type)
.Where("adminIds like '%,@a,%'", new { a = 1 })
.ToList();
虽然生成的SQL语句在替换参数后能够正常查询出结果,但代码执行后返回的却是空数组。这种现象让开发者感到困惑,因为看似正确的语法却得不到预期的结果。
问题原因
问题的根源在于FreeSql处理参数化查询的方式。在上述代码中,整个'%,@a,%'被FreeSql视为一个完整的字符串字面量,而不是将@a识别为需要替换的参数。因此,生成的SQL实际上是:
adminIds like '%,@a,%'
而不是开发者期望的:
adminIds like '%,1,%'
正确用法
正确的做法是将LIKE条件和参数分开处理:
var list = fsql.Select<object>()
.AsType(table.Type)
.Where("adminIds like @p1", new { p1 = "%,1,%" })
.ToList();
这样FreeSql会正确地将@p1替换为参数值%,1,%,生成预期的SQL语句:
adminIds like '%,1,%'
深入理解
-
参数化查询原理:FreeSql会将Where方法中的参数进行预处理,确保SQL注入安全。当使用
@param语法时,FreeSql会将其识别为参数占位符。 -
字符串处理差异:在SQL字符串中,单引号内的内容被视为字符串字面量,不会被解析为参数。因此
'%,@a,%'中的@a不会被识别为参数。 -
性能考虑:正确的参数化方式不仅解决了查询问题,还能利用数据库的查询缓存,提高性能。
实际应用建议
-
对于简单的LIKE查询,推荐使用FreeSql的字符串扩展方法:
.Where(a => a.adminIds.Contains(",1,")) -
对于复杂的LIKE模式,确保参数在字符串外部:
.Where("field like @p1 + '%'", new { p1 = "prefix" }) -
始终检查生成的SQL语句,可以使用
UseMonitorCommand来输出实际执行的SQL。
总结
在使用FreeSql进行LIKE查询时,理解参数化查询的工作原理至关重要。避免将参数放在字符串字面量内部,确保参数能够被正确识别和替换。掌握这一技巧后,开发者可以更加灵活地构建各种复杂的查询条件,同时保证代码的安全性和性能。
记住:在SQL中,单引号内的内容就是字面量,不会被解析为任何特殊语法。这一原则不仅适用于FreeSql,也适用于大多数ORM框架和原生SQL查询。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00