NeMo Guardrails中实现仅执行输入意图识别的技术方案
2025-06-12 11:02:56作者:邵娇湘
在基于NeMo Guardrails构建对话系统时,开发者有时需要灵活控制对话流程的执行阶段。本文探讨一种特定场景下的技术实现方案:如何配置NeMo Guardrails使其仅执行输入校验和用户意图识别,而不继续后续的对话管理和回复生成流程。
核心需求场景
在实际业务场景中,存在以下典型需求:
- 需要先通过Guardrails进行输入内容的安全检测(如敏感词过滤、越狱尝试识别等)
- 接着进行用户意图的精确识别和分类
- 后续的应答生成由独立的RAG系统或专业领域模型完成
这种架构设计常见于需要将安全管控层与业务逻辑层解耦的系统,特别是在医疗、金融等对响应准确性要求较高的领域。
技术实现方案
NeMo Guardrails提供了灵活的生成选项配置,通过options参数可以精确控制执行流程:
response = rails.generate(
messages=[{"role": "user", "content": "用户输入内容"}],
options={"rails": ["input"]}
)
此配置将使系统:
- 执行所有注册的输入护栏(input rails)
- 包括内置的内容安全检查
- 执行用户意图识别(generate_user_intent)
- 跳过后续的对话状态管理(generate_next_step)
- 跳过自动回复生成(generate_bot_message)
架构设计建议
对于需要集成独立应答系统的场景,推荐采用以下架构:
- 安全过滤层:利用Guardrails的input rails实现
- 意图识别层:通过generate_user_intent获取结构化意图
- 业务处理层:将意图传递给专业系统处理
- 输出过滤层(可选):必要时再通过output rails对最终回复进行过滤
这种分层架构既保证了输入安全性,又能充分发挥专业领域模型的能力,同时保持系统的可维护性和扩展性。
注意事项
- 当只启用input rails时,返回的response对象中将不包含bot_message字段
- 用户意图信息可通过response.intent获取
- 建议在意图识别后添加业务逻辑路由,将不同意图导向对应的处理系统
- 对于复杂场景,可以考虑组合使用多个rails配置,实现更精细的流程控制
通过这种配置方式,开发者可以充分发挥NeMo Guardrails在对话安全和控制方面的优势,同时保持业务逻辑处理的灵活性。这种混合架构特别适合需要将安全管控与业务处理解耦的企业级应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110