EnergyPatchTST 项目亮点解析
2025-06-10 10:39:25作者:房伟宁
1. 项目基础介绍
EnergyPatchTST 是一个开源项目,旨在实现一种多尺度时间序列变换器(Multi-scale Time Series Transformers),用于能源预测并估计不确定性。该项目基于 Patch Time Series Transformer 架构,针对能源时间序列数据的特点进行了优化,能够有效捕捉多尺度特征,并集成未来已知变量,为能源行业提供准确的预测结果。
2. 项目代码目录及介绍
项目代码目录如下:
data_provider/:包含数据提供和预处理相关代码。dataset/:定义了数据集的相关类和接口。exp/:包含了实验配置和训练相关代码。layers/:定义了模型中的各个层次结构。models/:实现了 EnergyPatchTST 模型和相关组件。scripts/:包含项目运行脚本和相关命令。utils/:提供了项目所需的通用工具和函数。.gitignore:指定了 Git 忽略的文件和目录。LICENSE:项目的开源许可证文件。README.md:项目说明文件。requirements.txt:项目依赖的 Python 包列表。run_energy_exp.py:运行能源实验的主脚本。run_longExp.py:运行长期实验的主脚本。
3. 项目亮点功能拆解
- 多尺度特征提取:项目能够捕捉不同时间分辨率下的模式,从即时波动到日常和季节性模式。
- 不确定性估计:通过蒙特卡洛dropout机制提供概率预测和校准的预测区间。
- 未来变量集成:将已知的未来变量(如温度和风速预测)集成到模型中,以提高预测准确性。
- 预训练与微调:利用迁移学习,通过在通用时间序列数据集上预训练,并在特定能源数据集上微调。
4. 项目主要技术亮点拆解
- PatchTST架构优化:基于PatchTST架构,针对能源时间序列数据的特点进行了深度优化。
- 蒙特卡洛dropout:在模型中加入蒙特卡洛dropout,为预测结果提供不确定性估计。
- 未来变量投影路径:设计专门的投影路径,将未来已知变量融入模型中。
- 迁移学习策略:采用预训练和微调策略,提高模型在不同数据集上的泛化能力。
5. 与同类项目对比的亮点
- 性能优势:实验结果显示,EnergyPatchTST 在不同预测时间范围内始终优于基线方法,预测误差降低7-12%,并提供可靠的不确定性估计。
- 长期预测能力:对于较长时间范围的预测,EnergyPatchTST 表现出显著的性能提升,有效捕捉长期模式。
- 商业友好:该项目允许商业使用,为企业和研究机构提供了便利。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137