Django-tablib 使用详解
2024-12-20 20:38:43作者:傅爽业Veleda
1. 安装指南
首先,确保您的环境中已经安装了 Django。接下来,可以使用 pip 命令安装 django-tablib:
pip install django-tablib
安装完成后,需要在 Django 项目的 settings.py 文件中添加 'django_tablib' 到 INSTALLED_APPS 列表中。
INSTALLED_APPS = [
# 其他应用...
'django_tablib',
]
2. 项目的使用说明
django-tablib 允许开发者从 Django 模型生成 tablib 数据集。以下是几个基本用法的示例。
创建数据集
根据模型自动创建包含所有字段的数据集:
from django_tablib import ModelDataset
from myapp.models import MyModel
class MyModelDataset(ModelDataset):
class Meta:
model = MyModel
data = MyModelDataset()
创建仅包含指定字段的数据集:
class MyModelDataset(ModelDataset):
class Meta:
model = MyModel
fields = ['id', 'myfield1']
创建排除某些字段的数据集:
class MyModelDataset(ModelDataset):
class Meta:
model = MyModel
exclude = ['myfield2']
声明式地指定字段及其头部的数据集:
from django_tablib import ModelDataset, Field
class MyModelDataset(ModelDataset):
myfield1 = Field(header='有趣的字段名')
class Meta:
model = MyModel
数据集操作
- 添加新行:
data.append(MyModel(**values))
- 添加新列:
data.append(col=['头部', '值1', '值2', ... '值n'])
- 删除行:
del data[1]
更多操作请参考 tablib 文档。
3. 项目API使用文档
django-tablib 提供了几个视图来支持数据的导出。
-
django_tablib.views.export:导出模型数据到 Excel。在
urls.py中添加:(r'^export/$', 'django_tablib.views.export', { 'model': MyModel, }) -
django_tablib.views.generic_export:支持多个模型的通用导出视图。在
urls.py中添加:url(r'export/(?P<model_name>[^/]+)/$', "django_tablib.views.generic_export"),在
settings.py中配置TABLIB_MODELS:TABLIB_MODELS = { 'myapp.simple': None, 'myapp.related': {'simple__title': ('exact', 'iexact')}, } -
django_tablib.admin.TablibAdmin:在 Django 管理界面中添加导出功能。from django.contrib import admin from django_tablib.admin import TablibAdmin from myapp.models import MyModel class MyModelAdmin(TablibAdmin): formats = ['xls', 'json', 'yaml', 'csv', 'html',] admin.site.register(MyModel, MyModelAdmin)
4. 项目安装方式
项目安装方式已在“安装指南”一节中详细说明。简要概括如下:
- 使用 pip 安装 django-tablib;
- 将
'django_tablib'添加到 Django 项目的INSTALLED_APPS中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134