AWS Deep Learning Containers发布PyTorch 2.3.0训练镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,可直接在AWS云平台上运行。这些容器包含了流行的深度学习框架及其依赖项,使数据科学家和开发人员能够快速部署深度学习工作负载,而无需花费时间配置环境。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.3.0版本的训练镜像,支持Python 3.11环境。这些新镜像基于Ubuntu 20.04操作系统,针对EC2实例进行了优化,提供了CPU和GPU两种版本。
镜像版本详情
本次发布的PyTorch训练镜像包含两个主要版本:
-
CPU版本:适用于不需要GPU加速的训练任务,镜像标签为
2.3.0-cpu-py311-ubuntu20.04-ec2-v1.31
。 -
GPU版本:支持CUDA 12.1,镜像标签为
2.3.0-gpu-py311-cu121-ubuntu20.04-ec2-v1.31
,适用于需要GPU加速的训练场景。
两个版本都预装了PyTorch 2.3.0框架及其相关组件,包括torchaudio 2.3.0和torchvision 0.18.0,构成了完整的PyTorch生态系统。
关键软件包
这些镜像预装了深度学习开发所需的常用软件包:
- 核心框架:PyTorch 2.3.0作为主要深度学习框架
- 数据处理:NumPy 1.26.4、pandas 2.2.2、scikit-learn 1.6.1和SciPy 1.13.0
- 计算机视觉:OpenCV 4.9.0.80和Pillow 10.3.0
- 自然语言处理:spaCy 3.7.3
- AWS工具:awscli 1.32.108、boto3 1.34.108和botocore 1.34.108
- 开发工具:Cython 3.0.10、pybind11 2.12.0和setuptools 78.1.0
GPU版本额外包含了NVIDIA相关的软件包和工具,如CUDA 12.1支持、cuDNN库以及Apex混合精度训练库。
技术特点
-
Python 3.11支持:这些镜像是首批支持Python 3.11的PyTorch训练镜像,利用了Python 3.11的性能改进。
-
Ubuntu 20.04基础:基于长期支持的Ubuntu 20.04 LTS操作系统,提供稳定可靠的基础环境。
-
EC2优化:专门针对AWS EC2实例进行了优化,确保在云环境中获得最佳性能。
-
完整的PyTorch生态系统:不仅包含PyTorch核心框架,还预装了torchaudio和torchvision等扩展库,覆盖音频和视觉领域的深度学习需求。
-
开发友好:预装了Emacs等开发工具,方便用户直接在容器中进行代码编辑和调试。
使用场景
这些预配置的PyTorch训练镜像适用于多种深度学习场景:
- 模型训练:直接在AWS EC2实例上启动深度学习模型训练
- 实验环境:快速搭建可复现的实验环境
- 生产部署:作为持续集成/持续部署(CI/CD)流水线的一部分
- 教学研究:为学生和研究人员提供一致的开发环境
总结
AWS Deep Learning Containers发布的PyTorch 2.3.0训练镜像为深度学习开发者提供了开箱即用的解决方案,特别是对于需要在AWS云平台上快速部署PyTorch训练环境的用户。这些镜像经过专业优化,包含了深度学习工作流所需的完整工具链,大大减少了环境配置的时间,让开发者可以专注于模型开发和训练本身。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~022CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0260- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









