Asterisk中抑制远端发送sendonly或inactive时的MOH播放机制
在Asterisk VoIP系统中,当远端端点发送带有"sendonly"或"inactive"属性的SDP时,系统会默认将其解释为"保持"状态并自动播放保持音乐(MOH)。然而,在某些特定场景下,这种默认行为可能并不符合实际需求,特别是在远端正在发送早期媒体或系统已经在播放特定音频的情况下。
问题背景
在SIP协议交互过程中,当主叫方A呼叫被叫方B时,被叫方可能会返回180 Ringing响应,随后发送183会话进展消息。这些消息中的SDP描述可能包含"sendonly"或"inactive"属性。按照行业惯例和Asterisk的默认实现,系统会将这些属性视为呼叫保持信号,从而触发保持音乐播放。
这种机制在大多数情况下是合理的,但在以下场景中会产生问题:
- 被叫方正在发送早期媒体(如自定义回铃音)
- 拨号方案中已经配置了特定音频播放给主叫方
- 系统需要保持当前音频流不被中断
技术实现原理
Asterisk通过解析SDP中的媒体方向属性来决定如何处理媒体流。当检测到"sendonly"(a=sendonly)或"inactive"(a=inactive)属性时,核心媒体处理逻辑会触发保持状态,启动MOH播放。这一机制位于Asterisk的SDP协商和媒体处理模块中。
解决方案
为了解决这一问题,Asterisk引入了新的配置选项和行为控制机制:
-
新增通道变量:开发了
SUPPRESS_MOH_ON_REMOTE_SENDONLY通道变量,当设置为true时,系统将不会在收到远端sendonly/inactive属性时自动播放MOH。 -
拨号方案控制:在拨号方案中可以通过设置通道变量来精确控制这一行为:
same => n,Set(SUPPRESS_MOH_ON_REMOTE_SENDONLY=true) -
核心代码修改:对媒体处理逻辑进行了增强,在触发MOH播放前检查相关标志位,确保在需要抑制MOH的场景下保持现有媒体流不变。
应用场景
这一改进特别适用于以下场景:
-
定制化回铃音系统:当企业使用定制回铃音(CRBT)时,可以确保主叫方听到的是定制音频而非标准MOH。
-
媒体网关应用:在媒体网关场景中,可能需要保持现有媒体流的连续性。
-
特殊业务场景:如语音信箱系统、交互式语音应答(IVR)等需要精确控制音频播放的场景。
实现细节
在技术实现上,主要修改涉及:
- SDP解析模块:增强了对媒体方向属性的处理逻辑
- 媒体控制层:增加了MOH触发条件的判断
- 通道变量处理:新增了对抑制MOH标志的支持
系统现在会在以下情况下保持现有音频流:
- 远端发送sendonly/inactive属性
- 抑制MOH标志被激活
- 当前已有活跃的媒体流
最佳实践
对于系统管理员和开发人员,建议:
- 在需要保持现有媒体流的场景下明确设置抑制标志
- 对于定制化音频应用,应在拨号方案中妥善处理媒体方向变化
- 测试不同场景下的媒体流行为,确保符合业务需求
这一改进显著增强了Asterisk在复杂媒体场景下的灵活性,使系统能够更好地适应各种业务需求,同时保持了与传统实现的兼容性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00