TSED框架中为@BodyParams添加描述的解决方案
在TSED框架开发过程中,开发者经常会遇到需要为API接口的请求体参数添加详细描述的需求。本文将以一个实际案例为基础,深入探讨如何正确地为@BodyParams
装饰器添加描述信息,并分析其背后的技术原理。
问题背景
在构建RESTful API时,良好的文档是必不可少的。TSED框架通过装饰器提供了强大的Swagger文档生成能力。然而,当开发者尝试为@BodyParams
参数添加描述时,可能会遇到描述信息没有正确显示在生成的Swagger文档中的问题。
典型场景分析
考虑以下常见场景:一个文件上传接口需要接收三个参数:
- 文件本身(通过
@MultipartFile
接收) - 文件URL(通过
@BodyParams
接收) - 文件密码(通过
@BodyParams
接收)
开发者期望为每个参数添加独立的描述信息,但实际生成的Swagger文档中,描述信息只出现在请求体的顶层,而不是各个参数上。
解决方案
TSED框架从7.69.2版本开始,已经修复了这个问题。现在开发者可以按照以下方式为每个@BodyParams
参数添加描述:
@Post("/upload")
async uploadFile(
@Description("The file you want to upload")
@MultipartFile("file")
file?: PlatformMulterFile,
@Description("The URL of the file you want to upload")
@BodyParams("url")
url?: string,
@Description("Set a password for this file...")
@BodyParams("password")
password?: string
) {
// 方法实现
}
技术实现原理
在底层实现上,TSED框架通过以下机制支持参数级别的描述:
-
装饰器组合:
@Description
装饰器会与@BodyParams
装饰器协同工作,将描述信息存储在元数据中。 -
Swagger转换:当生成OpenAPI/Swagger规范时,框架会正确地将参数级别的描述信息映射到对应字段的
description
属性上。 -
多部分请求处理:对于
multipart/form-data
类型的请求,框架会特殊处理文件上传和其他参数的组合情况。
最佳实践
-
描述清晰明确:为每个参数提供准确、清晰的描述,帮助API使用者理解参数用途。
-
保持一致性:在整个项目中保持描述风格的一致性,便于维护和理解。
-
考虑国际化:如果项目需要支持多语言,可以考虑将描述信息提取到单独的国际化文件中。
-
结合其他装饰器:可以结合
@Required
、@Example
等装饰器,提供更完整的API文档。
总结
TSED框架通过灵活的装饰器系统,为开发者提供了强大的API文档生成能力。正确使用@Description
与@BodyParams
的组合,可以生成清晰、专业的API文档,极大提升开发效率和API可用性。随着框架的不断更新,这类文档相关的功能也在持续完善中。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0297- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









