TSED框架中为@BodyParams添加描述的解决方案
在TSED框架开发过程中,开发者经常会遇到需要为API接口的请求体参数添加详细描述的需求。本文将以一个实际案例为基础,深入探讨如何正确地为@BodyParams装饰器添加描述信息,并分析其背后的技术原理。
问题背景
在构建RESTful API时,良好的文档是必不可少的。TSED框架通过装饰器提供了强大的Swagger文档生成能力。然而,当开发者尝试为@BodyParams参数添加描述时,可能会遇到描述信息没有正确显示在生成的Swagger文档中的问题。
典型场景分析
考虑以下常见场景:一个文件上传接口需要接收三个参数:
- 文件本身(通过
@MultipartFile接收) - 文件URL(通过
@BodyParams接收) - 文件密码(通过
@BodyParams接收)
开发者期望为每个参数添加独立的描述信息,但实际生成的Swagger文档中,描述信息只出现在请求体的顶层,而不是各个参数上。
解决方案
TSED框架从7.69.2版本开始,已经修复了这个问题。现在开发者可以按照以下方式为每个@BodyParams参数添加描述:
@Post("/upload")
async uploadFile(
@Description("The file you want to upload")
@MultipartFile("file")
file?: PlatformMulterFile,
@Description("The URL of the file you want to upload")
@BodyParams("url")
url?: string,
@Description("Set a password for this file...")
@BodyParams("password")
password?: string
) {
// 方法实现
}
技术实现原理
在底层实现上,TSED框架通过以下机制支持参数级别的描述:
-
装饰器组合:
@Description装饰器会与@BodyParams装饰器协同工作,将描述信息存储在元数据中。 -
Swagger转换:当生成OpenAPI/Swagger规范时,框架会正确地将参数级别的描述信息映射到对应字段的
description属性上。 -
多部分请求处理:对于
multipart/form-data类型的请求,框架会特殊处理文件上传和其他参数的组合情况。
最佳实践
-
描述清晰明确:为每个参数提供准确、清晰的描述,帮助API使用者理解参数用途。
-
保持一致性:在整个项目中保持描述风格的一致性,便于维护和理解。
-
考虑国际化:如果项目需要支持多语言,可以考虑将描述信息提取到单独的国际化文件中。
-
结合其他装饰器:可以结合
@Required、@Example等装饰器,提供更完整的API文档。
总结
TSED框架通过灵活的装饰器系统,为开发者提供了强大的API文档生成能力。正确使用@Description与@BodyParams的组合,可以生成清晰、专业的API文档,极大提升开发效率和API可用性。随着框架的不断更新,这类文档相关的功能也在持续完善中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00