探索LassoNet:深度学习与特征选择的新纪元
2024-05-31 05:46:19作者:彭桢灵Jeremy
1、项目介绍
LassoNet是一个创新的模型框架,它将特征选择和神经网络巧妙地融合在一起。灵感来源于经典的L1正则化(也称为LASSO),LassoNet通过添加线性跳跃连接从输入特征到输出,并对这些连接施加L1惩罚,从而实现特征的重要性评估。当一个特征在跳跃连接中被忽略时,整个网络都会对其置之不理。这种设计不仅保留了神经网络的强大学习能力,还赋予了模型自动特征选择的能力。
2、项目技术分析
LassoNet的核心是其跨层的线性跳跃连接和L1惩罚项。通过在模型训练过程中调整正则化参数λ,可以控制网络对各个特征的依赖程度,进而达到稀疏解的效果。此外,LassoNet还提供交叉验证功能,以提高模型泛化性能,并支持组特征选择,这在处理有结构或相关特征的数据集时尤其有用。
3、项目及技术应用场景
LassoNet适用于各种机器学习任务,包括回归、分类以及Cox比例风险回归。无论是在金融领域的预测建模,生物医学数据分析中的生存分析,还是在工业界的大数据挖掘,LassoNet都能有效地减少冗余特征,提升模型解释性和性能。
例如,在医疗健康领域,LassoNet可以通过自动筛选关键疾病标志物,帮助研究人员构建更准确的疾病预测模型;在商业智能中,LassoNet可以帮助企业识别影响销售的关键因素,优化营销策略。
4、项目特点
- 易于使用:LassoNet遵循Scikit-Learn的标准API设计,使其易于集成到现有工作流中。
- 多任务支持:提供了回归、分类和Cox比例风险回归的模型。
- 交叉验证:内置5折交叉验证机制,自动寻找最佳正则化参数λ。
- 组特征选择:支持按照特征组进行特征选择,适合处理结构化的特征数据。
- 自动化:如
lambda_start="auto"选项,可以自动确定正则化路径的起始点。
为了进一步了解LassoNet及其强大功能,你可以访问项目网站https://lasso-net.github.io/,查看详细文档和应用示例,甚至参与到这个开源项目的发展中来。
在这个深度学习与特征选择相结合的时代,LassoNet无疑为数据科学家们提供了一种崭新的工具,让我们共同探索这一技术的无限潜力吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135