LMIC-node 项目下载及安装教程
1. 项目介绍
LMIC-node 是一个用于 LoRaWAN 节点的示例应用程序,适用于 The Things Network (TTN)。它展示了如何发送上行消息、接收下行消息、实现下行命令,并提供有用的状态信息。通过 LMIC-node,您可以轻松快速地让节点运行起来。LMIC-node 支持多种流行的 LoRa 开发板,使用 Arduino 框架、LMIC LoRaWAN 库和 PlatformIO。
2. 项目下载位置
要下载 LMIC-node 项目,您可以使用 Git 命令行工具或直接从 GitHub 页面下载 ZIP 文件。以下是使用 Git 命令行工具下载项目的步骤:
git clone https://github.com/lnlp/LMIC-node.git
3. 项目安装环境配置
3.1 安装 PlatformIO
LMIC-node 项目使用 PlatformIO 进行开发和构建。PlatformIO 是一个跨平台的开发工具,支持多种开发板和框架。您可以通过以下步骤安装 PlatformIO:
- 安装 Visual Studio Code:首先,您需要安装 Visual Studio Code (VS Code),这是一个轻量级的代码编辑器。
- 安装 PlatformIO 插件:在 VS Code 中,打开扩展市场,搜索并安装 "PlatformIO IDE" 插件。
3.2 配置 PlatformIO
安装完成后,打开 VS Code,您将看到 PlatformIO 的图标。点击图标,进入 PlatformIO 主界面。

3.3 导入项目
在 PlatformIO 主界面中,选择 "Open Project",然后选择您刚刚下载的 LMIC-node 项目文件夹。

4. 项目安装方式
4.1 选择开发板
在 platformio.ini 文件中,选择您使用的开发板。例如,如果您使用的是 ESP32 开发板,可以在 platformio.ini 文件中找到以下配置:
[env:esp32dev]
platform = espressif32
board = esp32dev
framework = arduino
4.2 配置 LoRaWAN 区域
在 platformio.ini 文件中,选择您的 LoRaWAN 区域。例如,如果您在欧洲,可以使用以下配置:
[common]
lmic_pins = lmic_pins_ttgo_lora32_v1
lmic_region = EU868
4.3 提供 LoRaWAN 密钥
在 lorawan-keys.h 文件中,提供您的 LoRaWAN 密钥。这些密钥通常由 The Things Network 提供。
4.4 编译和上传
在 PlatformIO 主界面中,点击 "Build" 按钮进行编译,然后点击 "Upload" 按钮将固件上传到开发板。

5. 项目处理脚本
LMIC-node 项目包含多个处理脚本,用于处理上行和下行消息。以下是一些关键脚本的介绍:
5.1 setup() 函数
setup() 函数在启动时执行,用于初始化硬件和配置。
5.2 doWork 任务
doWork 任务定期执行,用于收集输入数据并安排上行消息。
5.3 processWork() 函数
processWork() 函数处理上行消息的生成和发送。
5.4 processDownlink() 函数
processDownlink() 函数处理下行消息的接收和处理。
5.5 状态信息
LMIC-node 通过串口和显示器输出状态信息,包括时间、事件、上行和下行帧计数器、RSSI 和 SNR 等。
通过以上步骤,您可以成功下载、配置和安装 LMIC-node 项目,并开始使用它进行 LoRaWAN 开发。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00