AWS Deep Learning Containers发布PyTorch 2.4.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,它集成了主流深度学习框架、工具和库,帮助开发者快速部署深度学习应用。这些容器镜像经过优化,可直接在Amazon EC2、Amazon ECS和Amazon EKS等服务上运行,大大简化了深度学习环境的配置和管理工作。
最新PyTorch推理镜像发布
AWS近期发布了基于PyTorch 2.4.0框架的推理专用容器镜像,支持Python 3.11环境,运行在Ubuntu 22.04操作系统上。这次发布包含两个主要镜像版本:
-
CPU优化版本:适用于不需要GPU加速的推理场景,镜像标识为
pytorch-inference:2.4.0-cpu-py311-ubuntu22.04-sagemaker-v1.6 -
GPU加速版本:针对CUDA 12.4环境优化,支持NVIDIA GPU加速,镜像标识为
pytorch-inference:2.4.0-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.6
关键技术特性
1. 核心框架支持
两个版本均基于PyTorch 2.4.0构建,这是PyTorch框架的最新稳定版本,带来了多项性能改进和新特性。同时集成了配套的torchaudio(2.4.0)和torchvision(0.19.0)库,为音频和计算机视觉任务提供完整支持。
2. 开发工具与依赖
镜像中预装了完整的Python科学计算生态:
- 数据处理:NumPy 2.1.2、Pandas 2.2.3
- 科学计算:SciPy 1.14.1
- 机器学习:scikit-learn 1.5.2
- 图像处理:OpenCV 4.10.0.84、Pillow 11.0.0
- 开发工具:Cython 3.0.11、ninja 1.11.1.1
3. 模型服务能力
镜像内置了TorchServe(0.12.0)和Torch Model Archiver(0.12.0),为生产环境中的模型部署提供专业支持。这些工具可以帮助开发者轻松地将训练好的PyTorch模型打包并部署为高性能的推理服务。
4. 系统级优化
在底层系统配置上,两个版本都基于Ubuntu 22.04 LTS,并针对深度学习工作负载进行了优化:
- 使用GCC 11作为编译器工具链
- 集成最新的CUDA 12.4驱动(GPU版本)
- 包含cuDNN等加速库(GPU版本)
使用场景建议
这些预构建的PyTorch推理镜像特别适合以下场景:
- 云端模型服务:在Amazon SageMaker或EC2上快速部署PyTorch模型
- 批量推理任务:处理大规模离线推理工作负载
- 开发测试环境:为团队提供一致的PyTorch开发环境
- CI/CD流水线:在自动化流程中确保环境一致性
版本兼容性
需要注意的是,PyTorch 2.4.0引入了对Python 3.11的官方支持,这意味着开发者可以使用最新的Python特性。同时,CUDA 12.4的支持也确保了与最新NVIDIA硬件的兼容性。
对于需要长期支持的用户,AWS通常会维护多个版本的DLC镜像,建议根据项目需求选择合适的版本。新项目可以直接采用这些最新镜像以获得最佳性能和功能支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00