AutoGen项目中Gemini模型处理多系统消息的问题分析
在微软AutoGen项目的开发过程中,我们发现当使用Google Gemini模型配合OpenAI SDK时,模型无法正确处理多个系统消息(SystemMessage)的问题。这个问题在项目开发中显得尤为突出,因为其他主流模型如Claude和GPT-4都能很好地处理这种情况。
问题现象
当开发者向Gemini模型发送多个系统消息时,例如:
- 第一个系统消息要求"所有回复以'FOO'开头"
- 第二个系统消息要求"所有回复以'BAR'结尾"
Gemini模型只会响应最后一个系统消息,即只会在回复结尾加上"BAR",而忽略了开头的"FOO"要求。相比之下,Claude和GPT-4模型都能正确理解并执行这两个系统消息的要求。
技术分析
通过进一步的测试,我们发现如果将两个系统消息合并为一个,Gemini模型就能正确处理:
SystemMessage(content="当你说任何话时以'FOO'开头\n当你说任何话时以'BAR'结尾")
这表明问题不是Gemini模型本身无法理解复合指令,而是在OpenAI SDK与Gemini模型集成时,对多个系统消息的处理方式存在差异。
底层原因
经过代码分析,这个问题可能源于以下几个方面:
-
消息合并机制差异:Gemini的OpenAI SDK实现可能没有正确处理多个系统消息的合并逻辑,导致只保留了最后一个系统消息。
-
模型API规范差异:不同模型提供商对系统消息的处理规范可能不同,Gemini可能更倾向于接受单一系统消息。
-
上下文理解限制:Gemini模型在处理分开发送的多个系统指令时,可能没有建立指令间的关联性,导致部分指令被忽略。
解决方案
针对这个问题,开发团队已经提出了修复方案:
-
消息预处理:在将消息发送给Gemini模型前,自动合并多个系统消息为一个复合系统消息。
-
模型适配层:为Gemini模型实现专门的适配层,确保其消息处理方式与其他模型保持一致。
-
文档说明:在项目文档中明确说明Gemini模型的这一特性,指导开发者正确使用系统消息。
对开发者的建议
对于使用AutoGen框架的开发者,在处理Gemini模型时,可以采取以下最佳实践:
- 尽量将相关的系统指令合并为一个系统消息
- 使用清晰的分隔符(如换行符)来区分不同的指令
- 在关键业务场景中,优先测试模型对复杂指令的理解能力
这个问题不仅揭示了不同大语言模型在API实现上的差异,也提醒我们在构建多模型支持的系统时,需要考虑模型间的行为一致性。AutoGen团队正在积极解决这一问题,以确保开发者能够无缝地在不同模型间切换。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00