DataFusion 新增 DataFrame 创建宏:提升 Rust 数据操作体验
2025-05-31 04:01:25作者:卓炯娓
在数据分析领域,DataFrame 已经成为处理结构化数据的标准工具。Apache DataFusion 作为 Rust 生态中高性能的查询执行框架,近期社区讨论并实现了一个重要的功能增强——引入 df! 宏来简化 DataFrame 的创建过程。
背景与动机
传统上在 DataFusion 中创建 DataFrame 需要相对繁琐的步骤:首先创建 Schema,然后构建 RecordBatch,最后才能生成 DataFrame。这种冗长的过程在快速原型开发和测试场景中显得不够高效。
受 Polars 库的启发,DataFusion 社区决定引入类似的宏语法糖,让开发者能够以更简洁直观的方式创建内存中的 DataFrame。这种改进特别适合以下场景:
- 快速测试查询逻辑
- 构建小型示例数据集
- 教学和文档中的代码示例
技术实现解析
df! 宏的设计采用了 Rust 的声明式宏系统,其核心思想是将键值对形式的输入转换为 DataFusion 内部的 DataFrame 结构。宏的实现需要处理几个关键技术点:
- 类型推断:自动推断列数据的类型,支持整数、字符串等基本类型
- 长度校验:确保所有列的长度一致
- Schema 生成:根据列名和数据类型自动构建 Schema
- RecordBatch 创建:将输入数据转换为 DataFusion 的内部批处理格式
典型的用法示例如下:
let df = df!(
"id" => [1, 2, 3],
"name" => ["foo", "bar", "baz"]
);
与现有方案的对比
相比传统创建方式,df! 宏提供了显著的改进:
传统方式:
let schema = Schema::new(vec![
Field::new("id", DataType::Int32, false),
Field::new("name", DataType::Utf8, false),
]);
let batch = RecordBatch::try_new(
Arc::new(schema),
vec![
Arc::new(Int32Array::from(vec![1, 2, 3])),
Arc::new(StringArray::from(vec!["foo", "bar", "baz"])),
],
)?;
let ctx = SessionContext::new();
let df = ctx.read_batch(batch)?;
宏方式仅需一行代码即可完成相同功能,大大提升了开发效率和代码可读性。
应用场景与最佳实践
df! 宏特别适合以下场景:
- 单元测试:快速构建测试数据集验证查询逻辑
- 交互式探索:在 REPL 环境中快速尝试数据操作
- 文档示例:提供清晰简洁的 API 使用示例
- 教学演示:降低学习曲线,突出核心概念
使用时需要注意:
- 所有列的长度必须相同
- 复杂数据类型可能需要显式类型标注
- 大数据集建议仍使用传统方式以避免宏展开开销
未来展望
这一改进为 DataFusion 的易用性树立了新标杆。未来可能会在此基础上扩展更多功能:
- 支持更复杂的数据类型嵌套
- 添加数据生成模式(如范围、序列)
- 集成更丰富的数据转换链式调用
DataFusion 通过引入这类开发者友好的特性,正在逐步缩小与 Python 生态在易用性方面的差距,同时保持 Rust 的性能优势,为数据分析领域提供了新的可能性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C097
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
232
97
暂无简介
Dart
728
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
287
320
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
445
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19