NumExpr项目支持Python 3.13无GIL版本的实践与思考
在Python 3.13中,CPython引入了一项重大变革——实验性的"无GIL"(Global Interpreter Lock)构建版本,也被称为"free-threaded"Python。这一变化使得多线程程序能够绕过GIL的限制,从而显著提升执行效率,但同时也带来了全新的并发和并行编程挑战。作为PyData生态系统中的重要成员,NumExpr项目近期完成了对Python 3.13无GIL版本的支持工作。
无GIL Python的技术背景
传统Python解释器中的GIL一直是限制多线程性能的主要瓶颈。PEP 703提出的无GILPython实现移除了这一限制,使得多线程程序能够真正实现并行执行。这一变革为科学计算领域带来了新的机遇,特别是对于像NumExpr这样已经内置多线程支持的计算引擎。
NumExpr的适配工作
NumExpr团队与社区合作完成了多项关键工作以确保在无GIL环境下的稳定运行:
- 代码审计:全面检查C++代码中的全局变量、缓存等潜在线程安全问题
- 并行测试:使用pytest-run-parallel工具进行并发测试,暴露潜在问题
- 扩展模块声明:明确声明扩展模块支持无GIL环境
- CI/CD集成:在持续集成中添加对cp313t架构的wheel构建支持
技术挑战与解决方案
在适配过程中,团队遇到了几个关键挑战:
线程局部缓存问题
NumExpr原本使用全局缓存来存储编译结果以提高性能。在无GIL环境下,这种设计会导致线程安全问题。解决方案是将缓存改为线程局部存储,确保每个线程有自己的独立缓存空间。
线程数量控制
NumExpr提供了set_num_threads等API来控制计算线程数。在无GIL环境下,如果上层Python代码也使用多线程,可能导致线程过度分配问题。团队建议用户使用threadpoolctl工具来更好地管理线程资源。
环境检测
目前Python没有公开API来检测是否运行在无GIL模式下。团队采用了通过sysconfig检查Py_GIL_DISABLED配置变量的方式来实现这一检测,为后续可能的警告或优化提供基础。
性能考量
为了帮助用户理解无GIL环境下的性能特性,团队更新了基准测试脚本。新的测试展示了在无GIL环境下如何正确使用NumExpr的多线程能力,同时避免了由于缓存机制变化可能导致的性能误解。
未来展望
随着Python无GIL版本逐步成为默认实现,NumExpr团队将持续优化其多线程实现。特别是在以下方面:
- 更精细的线程资源管理
- 针对无GIL环境的性能优化
- 用户教育,帮助科学计算社区顺利过渡到无GIL环境
这次适配工作不仅确保了NumExpr在新Python版本中的兼容性,也为PyData生态系统的其他项目提供了宝贵经验。随着Python并发模型的演进,科学计算领域将迎来新的性能突破。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









