NumExpr项目支持Python 3.13无GIL版本的实践与思考
在Python 3.13中,CPython引入了一项重大变革——实验性的"无GIL"(Global Interpreter Lock)构建版本,也被称为"free-threaded"Python。这一变化使得多线程程序能够绕过GIL的限制,从而显著提升执行效率,但同时也带来了全新的并发和并行编程挑战。作为PyData生态系统中的重要成员,NumExpr项目近期完成了对Python 3.13无GIL版本的支持工作。
无GIL Python的技术背景
传统Python解释器中的GIL一直是限制多线程性能的主要瓶颈。PEP 703提出的无GILPython实现移除了这一限制,使得多线程程序能够真正实现并行执行。这一变革为科学计算领域带来了新的机遇,特别是对于像NumExpr这样已经内置多线程支持的计算引擎。
NumExpr的适配工作
NumExpr团队与社区合作完成了多项关键工作以确保在无GIL环境下的稳定运行:
- 代码审计:全面检查C++代码中的全局变量、缓存等潜在线程安全问题
- 并行测试:使用pytest-run-parallel工具进行并发测试,暴露潜在问题
- 扩展模块声明:明确声明扩展模块支持无GIL环境
- CI/CD集成:在持续集成中添加对cp313t架构的wheel构建支持
技术挑战与解决方案
在适配过程中,团队遇到了几个关键挑战:
线程局部缓存问题
NumExpr原本使用全局缓存来存储编译结果以提高性能。在无GIL环境下,这种设计会导致线程安全问题。解决方案是将缓存改为线程局部存储,确保每个线程有自己的独立缓存空间。
线程数量控制
NumExpr提供了set_num_threads等API来控制计算线程数。在无GIL环境下,如果上层Python代码也使用多线程,可能导致线程过度分配问题。团队建议用户使用threadpoolctl工具来更好地管理线程资源。
环境检测
目前Python没有公开API来检测是否运行在无GIL模式下。团队采用了通过sysconfig检查Py_GIL_DISABLED配置变量的方式来实现这一检测,为后续可能的警告或优化提供基础。
性能考量
为了帮助用户理解无GIL环境下的性能特性,团队更新了基准测试脚本。新的测试展示了在无GIL环境下如何正确使用NumExpr的多线程能力,同时避免了由于缓存机制变化可能导致的性能误解。
未来展望
随着Python无GIL版本逐步成为默认实现,NumExpr团队将持续优化其多线程实现。特别是在以下方面:
- 更精细的线程资源管理
- 针对无GIL环境的性能优化
- 用户教育,帮助科学计算社区顺利过渡到无GIL环境
这次适配工作不仅确保了NumExpr在新Python版本中的兼容性,也为PyData生态系统的其他项目提供了宝贵经验。随着Python并发模型的演进,科学计算领域将迎来新的性能突破。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00