Promptfoo 0.103.4版本发布:增强测试过滤与断言功能
Promptfoo是一个专注于大语言模型(Large Language Model)测试和评估的开源框架。它允许开发者系统地测试不同提示词(Prompt)的效果,比较不同模型或配置的输出,并确保AI系统的可靠性和安全性。本次0.103.4版本的更新主要围绕测试过滤、断言功能增强和安全性测试改进三个方面展开。
核心功能增强
测试结果过滤功能
新版本在命令行工具中增加了--filter-errors-only参数,这是一个实用的测试结果过滤功能。当执行eval命令时,使用该参数可以只显示包含错误的测试用例,帮助开发者快速定位问题。这个功能特别适合在持续集成(CI)环境中使用,可以显著减少日志噪音,让开发者专注于需要修复的问题。
F5提供商支持
框架新增了对F5提供商的占位支持。F5作为知名的应用交付和安全解决方案提供商,其集成将为用户提供更多部署选项。虽然当前版本只是占位实现,但为后续完整支持奠定了基础。
外部断言功能强化
断言系统是Promptfoo的核心组件之一,本次更新对其进行了多项改进:
-
现在可以在外部断言中指定函数名称,这为复杂测试场景提供了更大的灵活性。开发者可以更精确地控制断言逻辑的执行方式。
-
修复了Python断言中引用配置的问题,确保其行为与文档示例一致。这个修复使得Python断言更加可靠,特别是在需要访问测试配置信息的场景下。
-
改进了断言示例,并调整了默认使用的模型为GPT4-mini,这有助于提高断言执行的效率和成本效益。
安全测试改进
Promptfoo的安全测试功能在本版本中获得了多项增强:
-
改进了树状策略的评分机制,使其对潜在安全风险的识别更加准确。
-
优化了迭代式测试提供商的测试用例评分系统,提高了测试的精确度。
-
调整了树节点选择算法并增加了元数据支持,这使得测试过程更加透明,结果更易于分析。
-
减少了迭代式图像提供商的拒绝率,提高了测试的覆盖面和有效性。
-
新增了英语语言的网络安全评估内容,扩展了安全测试的覆盖范围。
开发者体验优化
-
改进了Web界面中元数据的展开/收起处理,使测试结果的浏览更加流畅。
-
增强了提供商覆盖设置的显示,确保配置信息准确呈现。
-
为WatsonX AI提供商增加了对WATSONX_AI_AUTH_TYPE环境变量的支持,简化了认证配置。
-
在Llama提供商中添加了调试日志,便于问题排查。
-
改进了测试的设置和清理过程,提高了测试的可靠性。
文档与示例改进
-
安全配置对话框的内容更加清晰,帮助用户更快上手复杂的安全测试场景。
-
文档中增加了暗黑模式支持,改善了阅读体验。
-
插件列表现在按pluginId排序,查找更加方便。
-
更新了LLM安全类型文档,反映了最新的安全研究成果。
-
修正了G-Eval页面的拼写错误,提高了文档的准确性。
技术细节优化
-
更新了多个依赖项到最新版本,包括@aws-sdk/client-bedrock-runtime和openai等关键库。
-
解决了依赖锁定文件中的问题,确保构建过程的稳定性。
-
为提供商测试响应添加了类型定义,增强了代码的类型安全性。
Promptfoo 0.103.4版本通过这些改进,进一步巩固了其作为大语言模型测试首选工具的地位。无论是常规的提示词测试,还是复杂的安全评估场景,新版本都提供了更强大、更可靠的功能支持。对于重视AI系统质量和安全性的团队来说,升级到这个版本将获得更完善的测试能力和更流畅的开发体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00