Ollama项目中的模型权重存储机制解析
在Ollama项目的使用过程中,许多用户可能会注意到一个现象:当通过ollama create命令从Safetensors格式转换模型时,系统会在本地生成一系列经过SHA-256处理的blob文件。这些文件占用的存储空间与原模型权重相当,这引发了对Ollama存储机制的技术探讨。
权重转换的核心原理
Ollama在模型转换过程中执行了两个关键技术操作:
-
数据类型转换:即使不进行量化操作(不使用
--quantize选项),系统也会将部分张量的数据类型从bfloat16转换为fp16。这种转换虽然保持了相同的数据量级,但实际存储的二进制数据已经发生了变化。 -
分块存储策略:原始模型权重会被分割成多个blob文件,每个文件都通过SHA-256算法生成唯一标识。这种设计并非简单的"重新加密",而是为后续的存储优化奠定基础。
分块存储的技术优势
Ollama采用这种看似消耗额外存储空间的机制,主要基于以下技术考量:
-
存储去重:当用户基于同一个基础模型创建多个变体(如不同量化版本或不同参数的模型)时,系统可以自动识别并复用相同的权重块。这意味着在
ollama ls中列出的多个模型可能共享相同的底层权重数据。 -
未来扩展性:当前实现是将权重分割为较大的块,但架构设计已经预留了进一步细化的空间。未来可以按张量级别进行分割,这将实现更精细的去重控制。
-
完整性校验:每个blob的SHA-256校验和确保了模型权重的完整性,防止在传输或存储过程中出现数据损坏。
对用户的实际影响
对于终端用户而言,这种设计意味着:
-
初次转换时的存储开销:首次创建模型时需要准备与原模型相当的临时存储空间,这是正常现象。
-
长期存储效率:当创建多个相关模型时,实际占用的总空间会显著小于各个模型独立存储所需的空间总和。
-
模型管理灵活性:用户可以自由修改Modelfile并重新创建模型,而不必担心重复存储相同权重数据的问题。
理解这些底层机制有助于用户更好地规划存储资源,并在Ollama生态中高效地管理多个模型变体。这种设计体现了现代机器学习工具链在存储效率和管理便利性上的平衡考量。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX00