Bloom Filter 技术文档
1. 安装指南
由于本JavaScript实现的Bloom Filter是一个纯前端项目,它不依赖于任何外部库或模块,因此不需要特定的安装步骤。您只需将相关的JavaScript文件包含到您的项目中即可。
// 假设您已经将Bloom Filter的JavaScript文件命名为BloomFilter.js
<script src="path_to/BloomFilter.js"></script>
确保将此<script>
标签添加到您的HTML文件中,以便可以在网页中使用Bloom Filter。
2. 项目的使用说明
此Bloom Filter项目实现了布隆过滤器的基本功能,包括添加元素、测试元素是否存在,以及序列化和反序列化过滤器状态。
以下是一个使用Bloom Filter的基本示例:
// 创建一个新的Bloom Filter实例,分配指定数量的位数和哈希函数
var bloom = new BloomFilter(32 * 256, 16);
// 向过滤器中添加元素
bloom.add("foo");
bloom.add("bar");
// 测试元素是否存在于过滤器中
console.log(bloom.test("foo")); // 可能返回true
console.log(bloom.test("bar")); // 可能返回true
console.log(bloom.test("blah")); // 可能返回false
3. 项目API使用文档
以下是Bloom Filter提供的API文档:
-
new BloomFilter(bits, hashCount)
:构造函数,创建一个新的Bloom Filter实例。bits
参数指定分配给过滤器的位数,hashCount
参数指定使用的哈希函数数量。 -
add(item)
:向过滤器中添加一个元素。item
可以是任何可以转换为字符串的值。 -
test(item)
:测试一个元素是否可能存在于过滤器中。返回true
表示元素可能存在,返回false
表示元素绝对不存在。 -
toJSON()
:返回一个可以JSON序列化的过滤器状态数组。 -
fromJSON(array)
:使用一个已序列化的数组来初始化过滤器状态。
以下是一个序列化和反序列化Bloom Filter状态的例子:
// 序列化Bloom Filter状态
var array = bloom.toJSON();
var json = JSON.stringify(array);
// 反序列化Bloom Filter状态
var bloom = BloomFilter.fromJSON(JSON.parse(json));
4. 项目安装方式
如前所述,由于本项目是一个纯前端JavaScript项目,实际上并没有安装过程。您只需要将Bloom Filter的JavaScript源代码文件下载到您的项目中,并通过<script>
标签在HTML页面中引用它。
确保您有正确处理JavaScript模块的经验,以便在您的项目中正确引入和使用Bloom Filter。如果您使用模块打包器(如Webpack或Browserify),您可能需要按照相应的模块系统规则来导入和使用Bloom Filter。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









