Bloom Filter 技术文档
1. 安装指南
由于本JavaScript实现的Bloom Filter是一个纯前端项目,它不依赖于任何外部库或模块,因此不需要特定的安装步骤。您只需将相关的JavaScript文件包含到您的项目中即可。
// 假设您已经将Bloom Filter的JavaScript文件命名为BloomFilter.js
<script src="path_to/BloomFilter.js"></script>
确保将此<script>标签添加到您的HTML文件中,以便可以在网页中使用Bloom Filter。
2. 项目的使用说明
此Bloom Filter项目实现了布隆过滤器的基本功能,包括添加元素、测试元素是否存在,以及序列化和反序列化过滤器状态。
以下是一个使用Bloom Filter的基本示例:
// 创建一个新的Bloom Filter实例,分配指定数量的位数和哈希函数
var bloom = new BloomFilter(32 * 256, 16);
// 向过滤器中添加元素
bloom.add("foo");
bloom.add("bar");
// 测试元素是否存在于过滤器中
console.log(bloom.test("foo")); // 可能返回true
console.log(bloom.test("bar")); // 可能返回true
console.log(bloom.test("blah")); // 可能返回false
3. 项目API使用文档
以下是Bloom Filter提供的API文档:
-
new BloomFilter(bits, hashCount):构造函数,创建一个新的Bloom Filter实例。bits参数指定分配给过滤器的位数,hashCount参数指定使用的哈希函数数量。 -
add(item):向过滤器中添加一个元素。item可以是任何可以转换为字符串的值。 -
test(item):测试一个元素是否可能存在于过滤器中。返回true表示元素可能存在,返回false表示元素绝对不存在。 -
toJSON():返回一个可以JSON序列化的过滤器状态数组。 -
fromJSON(array):使用一个已序列化的数组来初始化过滤器状态。
以下是一个序列化和反序列化Bloom Filter状态的例子:
// 序列化Bloom Filter状态
var array = bloom.toJSON();
var json = JSON.stringify(array);
// 反序列化Bloom Filter状态
var bloom = BloomFilter.fromJSON(JSON.parse(json));
4. 项目安装方式
如前所述,由于本项目是一个纯前端JavaScript项目,实际上并没有安装过程。您只需要将Bloom Filter的JavaScript源代码文件下载到您的项目中,并通过<script>标签在HTML页面中引用它。
确保您有正确处理JavaScript模块的经验,以便在您的项目中正确引入和使用Bloom Filter。如果您使用模块打包器(如Webpack或Browserify),您可能需要按照相应的模块系统规则来导入和使用Bloom Filter。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00