OpenCompass中自定义数据集评测得分异常问题解析
2025-06-08 00:07:47作者:尤辰城Agatha
在使用OpenCompass评估框架对讯飞API模型进行自定义数据集评测时,开发者可能会遇到一个典型问题:模型输出了正确答案,但最终得分却显示为0。这种情况通常与评测后处理(post-processing)环节的配置有关。
问题现象
当使用包含简单数学计算问题的JSONL格式自定义数据集(如test_question.jsonl)进行评测时,虽然模型输出了正确的计算结果,但OpenCompass的评估结果显示准确率为0。检查预测输出文件可以发现,模型实际上已经生成了正确答案,只是以特定格式呈现。
问题根源
该问题的核心在于OpenCompass默认的后处理机制无法正确解析模型的输出格式。讯飞API模型的响应通常包含解题过程和最终答案,而默认的评估器(如AccEvaluator)无法从这种复杂响应中提取出纯数字答案进行比对。
解决方案
要解决这个问题,需要为自定义数据集配置专门的预测后处理器(pred_postprocessor)。以下是具体实现步骤:
- 定义后处理函数:编写一个能够从模型响应中提取纯数字答案的函数
def math_postprocessor(text: str) -> str:
# 从模型响应中提取最后一个数字作为答案
import re
matches = re.findall(r'\d+', text)
return matches[-1] if matches else ""
- 配置数据集评估参数:在数据集配置中添加后处理设置
your_dataset_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type=math_postprocessor),
)
- 确保数据类型一致:后处理器返回的答案类型必须与标注(gold)类型一致,本例中都是字符串形式的数字
技术原理
OpenCompass的评估流程包含三个关键步骤:
- 模型预测生成原始输出
- 后处理器提取关键信息
- 评估器比对提取结果与标准答案
当后处理器配置不当时,即使模型生成了正确答案,评估器也无法正确比对,导致得分异常。自定义后处理器可以精确控制信息提取逻辑,确保评估准确性。
最佳实践
对于复杂模型输出,建议:
- 先检查原始预测文件,确认模型实际输出内容
- 根据输出格式设计匹配的后处理逻辑
- 测试后处理器能否从样例输出中正确提取答案
- 在配置中明确指定后处理器
通过这种方式,开发者可以确保OpenCompass能够准确评估各种复杂格式的模型输出,获得真实的性能指标。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp博客页面工作坊中的断言方法优化建议3 freeCodeCamp课程页面空白问题的技术分析与解决方案4 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析5 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp英语课程填空题提示缺失问题分析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
166
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
87
566

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

一个高性能、可扩展、轻量、省心的仓颉应用开发框架。IoC,Rest,宏路由,Json,中间件,参数绑定与校验,文件上传下载,OAuth2,MCP......
Cangjie
94
15

React Native鸿蒙化仓库
C++
199
279

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
564