OpenBMB/OmniLMM项目中MiniCPM-V-2_6模型的INT4量化问题解析
在OpenBMB/OmniLMM项目中,用户在使用MiniCPM-V-2_6模型进行INT4量化时遇到了一些技术问题。本文将深入分析这些问题的根源,并提供解决方案。
问题现象
当用户尝试对MiniCPM-V-2_6模型进行INT4量化时,出现了概率张量包含非法值的错误。具体表现为在调用torch.multinomial函数时,系统报告概率张量中包含了inf、nan或小于0的元素。这种错误通常会导致模型推理过程中断。
问题原因分析
经过技术社区的多方验证,发现这个问题主要由以下几个因素导致:
-
Torch版本不兼容:部分用户的环境中使用的是torch 2.1.0版本,而该版本与量化过程存在兼容性问题。升级到torch 2.1.2版本后问题得到解决。
-
环境配置冲突:有用户反映在配置vllm环境后出现了这个问题,说明可能存在某些库之间的版本冲突。重新安装requirements.txt中的依赖可以恢复正常的运行环境。
-
量化方法支持:值得注意的是,vllm目前不支持bitsandbytes量化类型,这可能导致部分用户在使用vllm进行推理时遇到障碍。
解决方案
针对上述问题,我们建议采取以下解决方案:
-
升级Torch版本:将PyTorch升级到2.1.2或更高版本,这可以解决概率张量异常的问题。
-
重建干净环境:如果问题仍然存在,建议创建一个新的虚拟环境,并严格按照项目提供的requirements.txt文件安装所有依赖。
-
选择合适的量化方法:如果需要使用vllm进行推理,应考虑使用其支持的量化方法,如AWQ、GPTQ等,而不是bitsandbytes。
技术建议
对于希望在OpenBMB/OmniLMM项目中使用量化模型的开发者,我们提供以下建议:
-
在进行量化操作前,务必检查所有关键库的版本兼容性,特别是PyTorch和相关量化库。
-
对于生产环境,建议先在测试环境中验证量化模型的效果和性能,确保没有类似的问题。
-
关注项目官方文档和更新,及时了解最新的量化方法支持和最佳实践。
通过以上分析和建议,希望能帮助开发者顺利地在OpenBMB/OmniLMM项目中使用MiniCPM-V-2_6模型的INT4量化功能,充分发挥量化模型在推理效率和资源占用方面的优势。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00