首页
/ 如何在离线环境中加载Sentence Transformers远程源码模型

如何在离线环境中加载Sentence Transformers远程源码模型

2025-05-13 14:08:10作者:魏侃纯Zoe

背景介绍

在使用Sentence Transformers项目时,我们经常会遇到需要加载远程源码模型的情况。这类模型通常依赖于额外的Python代码文件来实现其特殊架构或功能。当工作环境没有互联网连接时,这种依赖关系就会带来挑战。

问题分析

以nomic-ai/nomic-embed-text-v1模型为例,该模型采用了远程源码的方式实现其特殊架构。在离线环境中直接加载会失败,因为系统无法获取到模型依赖的配置文件(如configuration_hf_nomic_bert.py)。这与传统的本地模型(如all-mpnet-base-v2)有明显区别。

解决方案详解

1. 预先下载模型文件

在有网络连接的环境中,首先需要完整下载模型及其所有依赖:

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
model.save_pretrained("nomic-embed-text-v1-local")

这一步会创建一个包含模型权重和配置文件的本地目录。

2. 处理模型依赖

关键步骤是处理模型的auto_map配置:

  1. 检查生成的config.json文件
  2. 查找其中的auto_map字段,该字段定义了模型依赖的外部Python类
  3. 手动下载所有被引用的Python文件到本地模型目录

3. 修改配置文件

对于auto_map中形如"{repository}--{file}.{class}"的引用,需要简化为"{file}.{class}"格式。这是因为我们已经将所有依赖文件放在了本地目录中,不再需要从远程仓库加载。

4. 离线加载模型

完成上述准备后,即可在离线环境中加载模型:

embedding_model = SentenceTransformer(
    "nomic-embed-text-v1-local", 
    trust_remote_code=True,
    local_files_only=True,
)

技术细节

trust_remote_code参数在此场景下可能需要保留,因为它允许执行模型自带的Python代码。但在某些情况下,如果所有代码都已本地化,可能可以省略此参数。

最佳实践建议

  1. 对于需要离线使用的模型,建议提前在有网络的环境中测试完整的保存和加载流程
  2. 建立模型依赖文件的检查清单,确保所有必要文件都已本地化
  3. 考虑将处理好的离线模型包进行版本控制,便于团队共享和使用

总结

通过系统性地处理模型依赖关系,我们成功实现了Sentence Transformers远程源码模型在离线环境中的部署。这种方法不仅适用于nomic-ai/nomic-embed-text-v1模型,也可推广到其他类似架构的模型加载场景。

登录后查看全文
热门项目推荐
相关项目推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8