如何在离线环境中加载Sentence Transformers远程源码模型
2025-05-13 11:18:42作者:魏侃纯Zoe
背景介绍
在使用Sentence Transformers项目时,我们经常会遇到需要加载远程源码模型的情况。这类模型通常依赖于额外的Python代码文件来实现其特殊架构或功能。当工作环境没有互联网连接时,这种依赖关系就会带来挑战。
问题分析
以nomic-ai/nomic-embed-text-v1模型为例,该模型采用了远程源码的方式实现其特殊架构。在离线环境中直接加载会失败,因为系统无法获取到模型依赖的配置文件(如configuration_hf_nomic_bert.py)。这与传统的本地模型(如all-mpnet-base-v2)有明显区别。
解决方案详解
1. 预先下载模型文件
在有网络连接的环境中,首先需要完整下载模型及其所有依赖:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
model.save_pretrained("nomic-embed-text-v1-local")
这一步会创建一个包含模型权重和配置文件的本地目录。
2. 处理模型依赖
关键步骤是处理模型的auto_map配置:
- 检查生成的config.json文件
- 查找其中的auto_map字段,该字段定义了模型依赖的外部Python类
- 手动下载所有被引用的Python文件到本地模型目录
3. 修改配置文件
对于auto_map中形如"{repository}--{file}.{class}"的引用,需要简化为"{file}.{class}"格式。这是因为我们已经将所有依赖文件放在了本地目录中,不再需要从远程仓库加载。
4. 离线加载模型
完成上述准备后,即可在离线环境中加载模型:
embedding_model = SentenceTransformer(
"nomic-embed-text-v1-local",
trust_remote_code=True,
local_files_only=True,
)
技术细节
trust_remote_code参数在此场景下可能需要保留,因为它允许执行模型自带的Python代码。但在某些情况下,如果所有代码都已本地化,可能可以省略此参数。
最佳实践建议
- 对于需要离线使用的模型,建议提前在有网络的环境中测试完整的保存和加载流程
- 建立模型依赖文件的检查清单,确保所有必要文件都已本地化
- 考虑将处理好的离线模型包进行版本控制,便于团队共享和使用
总结
通过系统性地处理模型依赖关系,我们成功实现了Sentence Transformers远程源码模型在离线环境中的部署。这种方法不仅适用于nomic-ai/nomic-embed-text-v1模型,也可推广到其他类似架构的模型加载场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
311
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
845
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
693
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120