EasyScheduler中Kubernetes任务内存泄漏问题分析与修复
2025-05-17 14:44:09作者:凤尚柏Louis
问题背景
在EasyScheduler(后更名为DolphinScheduler)的任务调度系统中,Kubernetes任务执行时存在一个潜在的内存泄漏问题。这个问题主要出现在任务成功完成的场景下,系统未能正确清理Kubernetes客户端缓存,导致内存资源无法被及时释放。
技术原理分析
EasyScheduler的Kubernetes任务执行机制依赖于KubernetesApplicationManager组件。该组件负责管理Kubernetes客户端实例的生命周期,其主要功能包括:
- 创建和维护Kubernetes客户端连接
- 缓存活跃的Kubernetes任务信息
- 提供任务终止和清理接口
在系统设计中,KubernetesApplicationManager通过内部缓存来维护活跃的Kubernetes任务信息。当任务需要被终止或出现异常时,系统会调用killApplication方法来清理相关资源。然而,在任务正常完成的场景下,这一清理逻辑却未被触发。
问题具体表现
内存泄漏问题的具体表现如下:
- 缓存累积:每次Kubernetes任务成功执行后,相关的Kubernetes客户端实例仍保留在
KubernetesApplicationManager的缓存中 - 资源占用增长:随着任务执行次数的增加,未被释放的缓存对象会持续累积,最终导致内存使用量不断攀升
- 长期运行影响:对于长期运行的调度系统,这一问题可能导致严重的内存压力,甚至引发OOM(内存溢出)错误
解决方案
针对这一问题,我们提出了以下修复方案:
- 完善生命周期管理:在任务正常完成的流程中,增加对
KubernetesApplicationManager缓存的清理逻辑 - 双重保障机制:
- 在任务完成回调中主动清理资源
- 增加定时任务检查并清理异常残留的缓存
- 资源释放验证:添加日志记录和监控指标,确保资源释放操作确实执行
实现细节
修复方案的具体实现包括:
// 在任务完成处理逻辑中添加资源清理
public void onTaskComplete(KubernetesTaskExecutionContext context) {
try {
// 正常业务逻辑...
// 新增资源清理
kubernetesApplicationManager.cleanupApplication(context.getApplicationId());
} catch (Exception e) {
logger.error("Cleanup kubernetes resources failed", e);
}
}
同时,在KubernetesApplicationManager中完善清理逻辑:
public void cleanupApplication(String applicationId) {
if (StringUtils.isBlank(applicationId)) {
return;
}
synchronized (this) {
// 移除客户端缓存
k8sClientCache.remove(applicationId);
// 清理相关资源
// ...
}
}
验证与测试
为确保修复效果,需要进行以下验证:
- 单元测试:验证资源清理方法在各种场景下的正确性
- 集成测试:模拟长时间运行,观察内存使用情况
- 压力测试:高频率执行Kubernetes任务,确认无内存泄漏
- 监控验证:通过JMX或其他监控工具确认内存回收情况
最佳实践建议
基于此问题的经验,建议在类似场景中:
- 明确资源生命周期:为所有需要管理的资源定义清晰的生命周期
- 对称性设计:资源的创建和释放逻辑应该成对出现
- 防御性编程:即使理论上不会发生的场景,也应考虑资源释放
- 监控告警:对关键资源使用情况建立监控机制
总结
内存管理是分布式系统设计中的重要课题。通过对EasyScheduler中Kubernetes任务内存泄漏问题的分析和修复,我们不仅解决了一个具体的技术问题,更重要的是建立了一套完善的资源管理机制。这种机制可以推广到系统中其他需要管理外部资源的场景,如数据库连接、文件句柄等,从而提高整个系统的稳定性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Argo Events 入门教程:构建事件驱动工作流的基础指南【免费下载】 PolicyPlus 安装和配置指南如何快速掌握ScyllaDB:从入门到精通的完整文档指南 Redisson 安装与配置完全指南React TypeScript Cheatsheet:useReducer与Discriminated Unions高级用法 使用three-globe创建动态3D地球弧线可视化 WhisperKit本地模型加载问题解析与解决方案 在mytv-android项目中搭建私有IPTV直播源服务器的技术方案 OneBot标准解析:统一聊天机器人开发的接口规范 Visual C++运行库合集(vcredist)安装报错解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350