Makie.jl 中基于kwargs的绘图配方回归问题分析
2025-06-30 09:20:15作者:凌朦慧Richard
问题背景
在Makie.jl绘图库的最新补丁版本v0.21.10中,一个重要的回归问题被发现:接受关键字参数(kwargs)的绘图配方(plot recipes)不再正常工作。这个问题主要影响那些返回SpecApi的配方实现。
技术细节
在Makie.jl中,绘图配方是一种强大的机制,允许用户自定义如何将数据转换为可视化元素。典型的配方实现包括定义convert_arguments和used_attributes方法。
在v0.21.9版本中,以下实现可以正常工作:
using Makie
import Makie.SpecApi as S
struct MyS end
Makie.convert_arguments(::Type{Lines}, ::MyS; kwargs...) = 
    S.Lines([1,2,3], [1,2,3]; kwargs...)
Makie.used_attributes(T::Type{<:Plot}, ::MyS) = 
    (Makie.attribute_names(T)...,)
lines(MyS(); color=:red)  # 绘制红色线条
但在v0.21.10中,同样的代码会抛出MethodError: no method matching transform!(::Transformation, ::Nothing)错误。
问题根源
这个回归问题的根本原因是Makie.jl内部对属性传播机制的修改。新版本不再推荐也不支持在convert_arguments方法中直接转发所有关键字参数。相反,属性应该通过Makie的自动传播机制来处理。
推荐解决方案
根据Makie核心开发者的建议,正确的实现方式应该是:
function Makie.convert_arguments(::Type{Lines}, ::MyS)
    S.Lines([1, 2, 3], [1, 2, 3])
end
这样,color等属性会自动传播到生成的绘图元素上,而不需要在convert_arguments中显式处理。
深入讨论
属性传播机制
Makie.jl现在采用了一种更智能的属性传播机制:
- 当配方返回单个PlotSpec时,所有适用的属性会自动应用到该spec上
 - 这种机制简化了配方的实现,减少了手动属性管理的需要
 
复杂场景限制
需要注意的是,当前自动传播机制仅适用于返回单个PlotSpec的情况。对于更复杂的场景,如:
- 返回包含多个绘图元素的GridLayout
 - 需要特殊属性处理逻辑的情况
 
开发者可能需要等待Makie提供更完善的解决方案,或者考虑其他实现方式。
最佳实践建议
- 避免在convert_arguments中转发kwargs:这是不推荐的做法,可能导致不可预期的行为
 - 利用自动属性传播:让Makie自动处理属性传播,简化配方代码
 - 关注实验性功能状态:SpecApi仍被标记为实验性功能,使用时应注意可能的变更
 - 贡献测试用例:如果依赖特定功能,贡献测试用例有助于防止未来意外破坏
 
总结
这次回归问题反映了Makie.jl在改进其内部架构过程中的一些调整。虽然短期内可能造成一些代码需要修改,但从长远来看,新的属性传播机制提供了更简洁、更可靠的解决方案。开发者应该遵循新的最佳实践,同时理解实验性功能可能带来的变化风险。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444