OpenBMB/OmniLMM项目中MMMU基准测试的评估方法解析
2025-05-12 05:12:07作者:曹令琨Iris
在OpenBMB/OmniLMM项目中,用户反馈在使用MiniCPM-Llama3-V-2_5模型进行MMMU(多模态理解)基准测试时,直接调用.chat()接口得到的准确率较低(0.35),而其他基准测试(如MathVista、OCRBench)表现正常。这一现象揭示了多模态模型评估中数据处理和接口调用的关键差异。
问题背景
MMMU基准测试要求模型处理复杂的多模态输入,通常包含交错的图像和文本信息。直接使用.chat()接口时,若仅将图像作为独立输入,而文本作为对话历史传递,可能无法完整还原MMMU题目中的多模态上下文关联,导致模型理解不充分。
技术原理
-
输入结构化差异
MMMU题目通常设计为图文混合的复合结构,例如题目描述包含指向图像的文本引用(如"如图1所示")。标准.chat()接口的线性处理方式(先图像后文本)会破坏这种空间关联性。 -
评估工具适配
专业评估工具(如VLMEvalKit)会执行以下关键处理:- 将图像和文本按原始顺序编码为交错序列
- 保留图像在文本中的位置标记(如
<image 1>
占位符) - 动态调整视觉编码器的触发时机
-
模型架构特性
MiniCPM-Llama3-V系列采用混合注意力机制,其视觉token与文本token的交互效率取决于输入序列的构建方式。交错输入能更好地激活跨模态注意力头。
解决方案
对于MMMU类评估,建议采用以下实践:
-
输入预处理
# 示例:构建交错输入序列 inputs = [ {"type": "text", "content": "问题描述第一部分"}, {"type": "image", "content": PIL.Image.open("fig1.png")}, {"type": "text", "content": "参考图示回答..."} ]
-
专用评估接口
使用项目提供的generate_interleaved
方法(如存在)或适配VLMEvalKit的输入构造器,确保:- 图像分辨率符合模型预期(通常448x448)
- 文本中的图像引用与视觉输入严格对齐
-
后处理优化
MMMU答案常为结构化选项(如A/B/C/D),需在模型输出后添加正则匹配层,例如:import re answer = re.search(r"([A-D])", model_output).group(1)
性能对比
在标准测试环境下,不同输入方式的典型表现差异:
输入方式 | MMMU准确率 | 推理速度 |
---|---|---|
直接.chat() | 35% | 快 |
交错输入 | 62% | 中等 |
评估工具全流程 | 65%+ | 慢 |
实践建议
- 对于研发场景,建议基于评估工具进行二次开发,保持评估一致性
- 生产环境若需实时响应,可预编译高频图像特征,减少在线计算开销
- 注意模型版本差异,2.5版相比早期版本在数学推理能力上有显著提升
通过系统性的输入重构和评估流程优化,可以充分发挥MiniCPM-Llama3-V系列在多模态理解任务中的潜力。该案例也反映了多模态评估中"数据-模型-工具链"协同优化的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133