Tock操作系统NRF5x开发板RTC时钟预分频器优化分析
背景介绍
在嵌入式系统开发中,实时时钟(RTC)是一个关键组件,用于提供时间基准和定时功能。Tock操作系统在NRF5x系列开发板(如nrf52840dk)上使用RTC作为其alarm子系统的时钟源。然而,当前实现中存在一个潜在问题:RTC计数器每512秒就会溢出重置,这对于需要长时间运行的应用来说可能造成问题。
技术问题分析
NRF5x芯片的RTC模块具有24位计数器,当前配置使用32.768kHz的时钟源且未启用预分频器(PRESCALER=0)。这意味着:
- 计数器频率:32,768Hz
- 最大计数值:2^24 = 16,777,216
- 溢出时间:16,777,216 / 32,768 = 512秒(约8.5分钟)
这种配置导致系统每512秒就会经历一次计数器回绕,可能影响依赖长时间计时的应用程序。
解决方案探讨
NRF5x的RTC模块支持可配置的预分频器,范围从0到255(9位,但实际有效位数为8位)。通过调整预分频值,我们可以延长溢出时间同时保持足够的计时精度。
可选配置方案
-
PRESCALER=1方案
- 分频系数:2^(1+1)=4
- 有效频率:32,768/4=8,192Hz
- 溢出时间:16,777,216/8,192=2,048秒(约34分钟)
- 计时精度:约0.122ms
-
PRESCALER=7方案
- 分频系数:2^(7+1)=256
- 有效频率:32,768/256=128Hz
- 溢出时间:16,777,216/128=131,072秒(约36.4小时)
- 计时精度:约7.8ms
-
平衡方案(PRESCALER=3)
- 分频系数:2^(3+1)=16
- 有效频率:32,768/16=2,048Hz
- 溢出时间:16,777,216/2,048=8,192秒(约2.27小时)
- 计时精度:约0.49ms
实现考量
在Tock操作系统中实现这一优化需要考虑以下因素:
-
HIL接口扩展:可能需要为Alarm HIL添加新的频率类型,以支持不同的预分频配置。
-
精度与溢出时间的权衡:需要根据具体应用场景选择合适的分频值。对于需要高精度定时的应用,应选择较小的分频值;对于需要长时间运行的应用,则可接受较大分频值带来的精度损失。
-
向后兼容性:修改预分频值可能影响现有应用程序的行为,需要评估兼容性影响。
-
功耗考虑:更高的计数器频率通常意味着更高的功耗,在电池供电场景下需要权衡。
结论与建议
对于大多数应用场景,推荐采用PRESCALER=3的平衡方案,它在保持毫秒级精度的同时将溢出时间延长至2小时以上。这一修改需要在Tock的NRF5x芯片驱动中调整RTC初始化代码,并可能需要对Alarm HIL进行相应扩展。
这种优化将显著改善Tock在NRF5x平台上长时间运行的稳定性,同时保持足够的定时精度,为OpenThread等需要长时间运行协议栈的应用提供更好的支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









