首页
/ 跨平台哔哩下载工具downkyicore被收录至awesome-mac项目

跨平台哔哩下载工具downkyicore被收录至awesome-mac项目

2025-04-29 23:45:49作者:殷蕙予

近日,一款基于哔哩下载姬Windows版和AvaloniaUI框架开发的跨平台视频下载工具downkyicore被正式收录至知名开源项目awesome-mac的资源列表中。这款工具的出现填补了macOS平台缺乏高效B站视频下载工具的空白。

downkyicore的开发背景颇具故事性。开发者在使用macOS系统时,偶然发现了Windows平台上的哔哩下载姬工具,对其功能印象深刻,但苦于无法在macOS上使用。于是决定基于AvaloniaUI这一跨平台UI框架,重新开发了支持Windows、Linux和macOS三大操作系统的版本。

AvaloniaUI框架的选择体现了开发者的技术眼光。作为.NET基金会支持的开源项目,AvaloniaUI允许开发者使用XAML和C#构建跨平台应用程序,完美解决了不同操作系统间的UI适配问题。这使得downkyicore能够在保持功能一致性的同时,为不同平台的用户提供原生应用般的体验。

从技术实现角度来看,downkyicore继承了原版哔哩下载姬的核心下载功能,包括:

  • 支持多种清晰度视频下载
  • 批量下载UP主全部视频
  • 自动解析视频真实地址
  • 多线程加速下载等特性

同时,跨平台版本还针对不同操作系统的特性进行了优化,特别是在macOS平台上,提供了符合macOS设计规范的界面交互体验,解决了Windows版无法在macOS上运行的痛点。

awesome-mac项目作为GitHub上最受欢迎的macOS资源集合之一,对收录工具的质量要求严格。downkyicore能够通过审核,说明其在功能完整性、稳定性以及用户体验方面都达到了较高水准。这对于寻找优质macOS工具的用户来说,无疑是一个值得尝试的选择。

随着视频内容消费的普及,这类跨平台下载工具的需求将持续增长。downkyicore的出现不仅为macOS用户提供了便利,也展示了开源社区通过协作创新解决实际问题的能力。未来,随着更多开发者的加入,这类工具的功能和体验有望进一步提升。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.96 K
kernelkernel
deepin linux kernel
C
22
6
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
431
34
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
251
9
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
989
394
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
936
554
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69