Apache Pirk 项目技术文档
2024-12-23 03:12:15作者:韦蓉瑛
1. 安装指南
环境要求
- Java 8 或更高版本
- Maven 3.x
- 依赖项:Apache Hadoop、Apache Spark、Apache Storm、Elasticsearch
安装步骤
-
克隆项目仓库:
git clone https://github.com/apache/incubator-pirk.git cd incubator-pirk -
构建项目:
- 使用默认的
pom.xml文件构建项目:mvn package - 如果需要运行 Paillier 基准测试,可以使用
pom-with-benchmarks.xml文件:mvn package -f pom-with-benchmarks.xml
- 使用默认的
-
检查构建结果:
- 构建成功后,生成的 JAR 文件将位于
target目录下。
- 构建成功后,生成的 JAR 文件将位于
2. 项目的使用说明
基本概念
Apache Pirk 是一个用于可扩展私有信息检索(PIR)的框架。PIR 允许用户在不泄露查询内容的情况下,从数据集中检索信息。Pirk 使用同态加密技术,使得数据集可以在其原生位置进行查询,而无需移动数据。
主要角色
- Querier(查询者):负责生成加密的查询向量、解密查询结果。
- Responder(响应者):负责在目标数据集上执行加密查询,并生成加密的查询结果。
使用流程
- Querier 生成加密的查询向量,并将其发送给 Responder。
- Responder 使用加密的查询向量在数据集上执行查询,并将加密的查询结果发送回 Querier。
- Querier 解密查询结果,获取所需信息。
3. 项目API使用文档
数据和查询模式
Pirk 使用 XML 文件定义数据和查询模式,这些模式在 Querier 和 Responder 之间共享,以支持灵活和多样的数据和查询类型。
API 示例
-
生成加密查询向量:
QueryVector queryVector = new QueryVector(querySchema); queryVector.generateEncryptedQuery(); -
执行加密查询:
EncryptedQueryResult result = responder.performEncryptedQuery(queryVector); -
解密查询结果:
DecryptedResult decryptedResult = querier.decryptQueryResult(result);
4. 项目安装方式
通过 Maven 安装
-
在项目的
pom.xml文件中添加 Pirk 依赖:<dependency> <groupId>org.apache.pirk</groupId> <artifactId>pirk-core</artifactId> <version>1.0.0</version> </dependency> -
使用 Maven 构建项目:
mvn clean install
通过源码安装
-
克隆项目仓库并进入项目目录:
git clone https://github.com/apache/incubator-pirk.git cd incubator-pirk -
使用 Maven 构建项目:
mvn package -
构建成功后,生成的 JAR 文件将位于
target目录下,可以直接使用。
总结
Apache Pirk 是一个强大的 PIR 框架,适用于需要在分布式环境中进行私有信息检索的场景。通过本文档,您可以了解如何安装、使用 Pirk,并掌握其 API 的基本用法。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110