StreamPark项目中使用Flink SQL在YARN-Per-Job模式下的兼容性问题分析
问题背景
在Apache StreamPark项目开发过程中,发现当使用Flink 1.16或1.17版本运行Demo Flink SQL作业时,如果部署模式选择yarn-per-job,会出现作业无法正常启动的问题。值得注意的是,同样的作业如果直接使用flink run命令在本地运行则可以正常工作。
错误现象分析
系统抛出的异常堆栈显示,核心问题出现在Janino编译器初始化阶段。具体错误为"Unable to instantiate java compiler",更深层次的异常是"org.codehaus.janino.CompilerFactory cannot be cast to org.codehaus.commons.compiler.ICompilerFactory"。
这个错误表明在类加载过程中出现了版本冲突,Janino编译器相关的类被不同的类加载器加载,导致类型转换失败。Janino是一个轻量级的Java编译器,Flink SQL在优化查询计划时会使用它来动态生成和编译代码。
根本原因
经过深入分析,这个问题源于Flink类加载机制的复杂性,特别是在以下方面:
-
类加载器隔离问题:在yarn-per-job模式下,Flink会创建独立的类加载器来加载用户代码。当StreamPark打包的作业jar中包含的janino相关类与Flink运行时环境中的版本不一致时,就会出现类加载冲突。
-
依赖冲突:Flink Table Planner模块本身已经包含了janino相关依赖,而StreamPark的打包过程可能又引入了不同版本的janino库,导致在运行时出现类转换异常。
-
Flink版本差异:Flink 1.16和1.17版本在SQL模块的内部实现上有所调整,对janino的依赖处理方式也有所变化,这使得问题在这些版本中更为突出。
解决方案
针对这个问题,可以采取以下几种解决方案:
-
依赖排除:在StreamPark项目构建时,显式排除janino相关的传递依赖,确保只使用Flink运行时提供的版本。
-
类加载策略调整:修改作业提交逻辑,控制类加载器的父子关系,确保核心组件由父加载器加载,而用户代码由子加载器加载。
-
依赖版本统一:确保StreamPark打包的janino相关依赖与目标Flink版本完全一致,避免版本冲突。
-
模块化打包:将SQL相关依赖与核心依赖分离,采用更精细的依赖管理策略。
最佳实践建议
对于StreamPark用户在使用Flink SQL时,建议:
-
仔细检查项目中所有与janino相关的依赖,确保版本一致性。
-
对于Flink 1.16及以上版本,建议使用Flink官方推荐的依赖管理方式。
-
在复杂依赖场景下,考虑使用maven-shade-plugin等工具进行依赖重定位。
-
定期更新StreamPark版本,以获取最新的兼容性修复。
总结
这类类加载冲突问题在大数据生态系统中并不罕见,特别是在涉及多个框架和复杂依赖关系的场景下。理解Flink的类加载机制和依赖管理原理,对于解决类似问题至关重要。StreamPark团队已经注意到这个问题,并在后续版本中进行了相应修复,用户只需保持项目更新即可避免此类问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00