Modelscope/SWIFT项目中LLaVA模型训练报错问题分析与解决方案
2025-05-31 06:05:07作者:鲍丁臣Ursa
问题背景
在Modelscope/SWIFT项目中使用LLaVA-1.5-7B-HF模型进行监督式微调(SFT)训练时,用户遇到了一个关键错误:"Image features and image tokens do not match: tokens: 1, features 576"。这个错误表明图像特征和图像标记(token)数量不匹配,导致训练过程中断。
错误原因深度分析
技术背景
LLaVA(大型语言和视觉助手)是一种结合视觉和语言能力的多模态模型。在训练过程中,需要正确处理图像特征和对应的文本标记。图像特征通常由视觉编码器(如CLIP)提取,而文本标记则由语言模型处理。
根本原因
经过分析,该问题源于transformers库版本升级带来的兼容性问题:
- 在transformers 4.47及更高版本中,LLaVA的代码将图像标记的扩展逻辑移动到了processor.__call__函数中
- 然而MS-SWIFT的Template处理数据时没有调用processor.call,而是分开调用的
- 这种不一致导致图像特征和标记数量无法正确对齐
解决方案
临时解决方案
将transformers库降级到4.46版本可以暂时解决此问题:
pip install transformers==4.46.0
长期解决方案
对于项目维护者,建议考虑以下改进方向:
- 更新Template处理逻辑,确保与最新版transformers的processor调用方式兼容
- 实现统一的图像特征和标记处理流程
- 增加版本兼容性检查机制
技术细节扩展
LLaVA模型的工作原理
LLaVA模型处理多模态数据的基本流程:
- 图像通过视觉编码器转换为特征向量
- 文本通过分词器转换为标记序列
- 模型需要确保图像特征与对应的文本标记在数量上匹配
- 不匹配会导致模型无法正确学习视觉-语言关联
为什么版本升级会导致问题
transformers 4.47的改动旨在:
- 统一数据处理流程
- 简化模型调用接口
- 提高处理效率
但这种改进需要下游应用相应调整调用方式,否则就会出现兼容性问题。
最佳实践建议
对于使用MS-SWIFT进行多模态模型训练的用户:
- 注意检查transformers版本与项目要求的兼容性
- 对于LLaVA等特殊模型,关注官方文档的版本要求
- 在升级依赖库前,先在测试环境验证兼容性
- 遇到类似问题时,可以尝试回退到已知稳定的版本
总结
多模态模型训练涉及复杂的特征对齐问题,特别是在开源生态快速迭代的背景下,版本兼容性尤为重要。本文分析的LLaVA训练问题不仅是一个具体的技术案例,也反映了深度学习工程实践中版本管理的重要性。通过理解底层机制和采取适当的解决方案,用户可以顺利开展多模态模型的训练工作。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1