Modelscope/SWIFT项目中LLaVA模型训练报错问题分析与解决方案
2025-05-31 22:51:18作者:鲍丁臣Ursa
问题背景
在Modelscope/SWIFT项目中使用LLaVA-1.5-7B-HF模型进行监督式微调(SFT)训练时,用户遇到了一个关键错误:"Image features and image tokens do not match: tokens: 1, features 576"。这个错误表明图像特征和图像标记(token)数量不匹配,导致训练过程中断。
错误原因深度分析
技术背景
LLaVA(大型语言和视觉助手)是一种结合视觉和语言能力的多模态模型。在训练过程中,需要正确处理图像特征和对应的文本标记。图像特征通常由视觉编码器(如CLIP)提取,而文本标记则由语言模型处理。
根本原因
经过分析,该问题源于transformers库版本升级带来的兼容性问题:
- 在transformers 4.47及更高版本中,LLaVA的代码将图像标记的扩展逻辑移动到了processor.__call__函数中
- 然而MS-SWIFT的Template处理数据时没有调用processor.call,而是分开调用的
- 这种不一致导致图像特征和标记数量无法正确对齐
解决方案
临时解决方案
将transformers库降级到4.46版本可以暂时解决此问题:
pip install transformers==4.46.0
长期解决方案
对于项目维护者,建议考虑以下改进方向:
- 更新Template处理逻辑,确保与最新版transformers的processor调用方式兼容
- 实现统一的图像特征和标记处理流程
- 增加版本兼容性检查机制
技术细节扩展
LLaVA模型的工作原理
LLaVA模型处理多模态数据的基本流程:
- 图像通过视觉编码器转换为特征向量
- 文本通过分词器转换为标记序列
- 模型需要确保图像特征与对应的文本标记在数量上匹配
- 不匹配会导致模型无法正确学习视觉-语言关联
为什么版本升级会导致问题
transformers 4.47的改动旨在:
- 统一数据处理流程
- 简化模型调用接口
- 提高处理效率
但这种改进需要下游应用相应调整调用方式,否则就会出现兼容性问题。
最佳实践建议
对于使用MS-SWIFT进行多模态模型训练的用户:
- 注意检查transformers版本与项目要求的兼容性
- 对于LLaVA等特殊模型,关注官方文档的版本要求
- 在升级依赖库前,先在测试环境验证兼容性
- 遇到类似问题时,可以尝试回退到已知稳定的版本
总结
多模态模型训练涉及复杂的特征对齐问题,特别是在开源生态快速迭代的背景下,版本兼容性尤为重要。本文分析的LLaVA训练问题不仅是一个具体的技术案例,也反映了深度学习工程实践中版本管理的重要性。通过理解底层机制和采取适当的解决方案,用户可以顺利开展多模态模型的训练工作。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328