Elastic-Job 示例项目教程
2024-09-02 00:25:11作者:裴麒琰
1、项目介绍
Elastic-Job 是一个分布式任务调度框架,由 Apache ShardingSphere 社区开发。它提供了灵活的任务分片策略和容错机制,适用于大规模数据处理和定时任务调度。Elastic-Job 支持多种任务类型,包括简单任务、数据流任务和脚本任务。
2、项目快速启动
环境准备
- Java 8 或更高版本
- Maven 3.5 或更高版本
- Git
快速启动步骤
-
克隆项目
git clone https://github.com/apache/shardingsphere-elasticjob-example.git cd shardingsphere-elasticjob-example -
编译项目
mvn clean install -
运行示例
进入
elastic-job-example-lite-springboot目录,运行以下命令:cd elastic-job-example-lite-springboot mvn spring-boot:run
示例代码
以下是一个简单的任务示例代码:
import com.dangdang.ddframe.job.config.JobCoreConfiguration;
import com.dangdang.ddframe.job.config.simple.SimpleJobConfiguration;
import com.dangdang.ddframe.job.lite.api.JobScheduler;
import com.dangdang.ddframe.job.lite.config.LiteJobConfiguration;
import com.dangdang.ddframe.job.reg.base.CoordinatorRegistryCenter;
import com.dangdang.ddframe.job.reg.zookeeper.ZookeeperConfiguration;
import com.dangdang.ddframe.job.reg.zookeeper.ZookeeperRegistryCenter;
public class SimpleJobDemo {
public static void main(String[] args) {
// 定义Zookeeper注册中心配置
ZookeeperConfiguration zkConfig = new ZookeeperConfiguration("localhost:2181", "elastic-job-demo");
CoordinatorRegistryCenter regCenter = new ZookeeperRegistryCenter(zkConfig);
regCenter.init();
// 定义作业核心配置
JobCoreConfiguration coreConfig = JobCoreConfiguration.newBuilder("demoJob", "0/5 * * * * ?", 10).build();
// 定义Simple作业配置
SimpleJobConfiguration simpleJobConfig = new SimpleJobConfiguration(coreConfig, MySimpleJob.class.getCanonicalName());
// 定义Lite作业根配置
LiteJobConfiguration jobRootConfig = LiteJobConfiguration.newBuilder(simpleJobConfig).build();
// 创建作业调度器
new JobScheduler(regCenter, jobRootConfig).init();
}
}
3、应用案例和最佳实践
应用案例
- 电商订单处理:使用 Elastic-Job 处理大量订单数据,实现订单的定时处理和分片处理。
- 日志分析:定时收集和分析日志数据,实现高效的日志处理和分析。
最佳实践
- 任务分片:合理设置任务分片数,根据集群节点数和任务复杂度进行调整。
- 容错处理:配置任务的容错机制,确保任务在节点故障时能够自动恢复。
- 监控和报警:集成监控系统,实时监控任务执行状态,及时发现和处理异常。
4、典型生态项目
- ShardingSphere:一个分布式数据库中间件,与 Elastic-Job 结合使用,实现数据分片和任务调度。
- Zookeeper:作为注册中心,提供任务调度的分布式协调服务。
- Spring Boot:简化开发和部署流程,提供快速开发和部署的能力。
通过以上内容,您可以快速了解和使用 Elastic-Job 项目,实现高效的分布式任务调度。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136