Docker-Mailserver 中配置 Dovecot 自动清理垃圾邮件和回收站
在邮件服务器管理中,自动清理过期邮件是一个常见的需求。本文将介绍如何在 Docker-Mailserver 项目中配置 Dovecot 的自动清理功能,实现定时清理垃圾邮件(Junk)和回收站(Trash)中的邮件。
自动清理功能简介
Dovecot 提供了 autoexpunge 功能,可以自动删除指定时间前的邮件。这个功能特别适合用于:
- 垃圾邮件文件夹(Junk):通常垃圾邮件保留30天就足够了
 - 回收站文件夹(Trash):用户删除的邮件可以保留90天
 
配置方法
在 Docker-Mailserver 中,我们可以通过修改 dovecot.cf 配置文件来实现自动清理功能。以下是完整的配置示例:
# 启用日期保存字段缓存
mail_always_cache_fields = date.save
# 配置命名空间和邮箱自动清理规则
namespace inbox {
  mailbox Junk {
    autoexpunge = 30d
    autoexpunge_max_mails = 100	
  }
  mailbox Trash {
    autoexpunge = 90d
    autoexpunge_max_mails = 100
  }
}
配置参数说明
- 
mail_always_cache_fields = date.save
这个设置确保 Dovecot 会缓存邮件的原始保存日期。如果不设置这个参数,Dovecot 可能会使用文件系统的创建时间(ctime)作为判断依据,导致自动清理功能失效。 - 
autoexpunge = 30d
设置邮件在30天后自动删除。对于垃圾邮件文件夹(Junk),30天是一个合理的保留期限。 - 
autoexpunge_max_mails = 100
设置每次自动清理最多处理100封邮件。这个参数可以防止一次性处理过多邮件导致服务器负载过高。 
技术细节
日期保存机制
Dovecot 使用 date.saved 字段来判断邮件保存时间。如果没有正确配置缓存,Dovecot 可能会使用文件系统的 ctime 属性,这在容器环境中会导致问题,因为:
- 容器启动时可能会重置文件的 ctime
 - 存储卷挂载时也可能影响 ctime
 
因此,必须配置 mail_always_cache_fields = date.save 来确保使用正确的保存时间。
验证配置
配置完成后,可以使用以下命令验证配置是否生效:
- 
检查 Dovecot 配置:
doveconf在输出中应该能看到各个邮箱的自动清理配置。
 - 
检查邮件保存日期:
doveadm fetch -u 用户名 "date.saved any.field" 邮箱名这个命令可以查看邮件的实际保存日期。
 
最佳实践建议
- 
对于生产环境,建议先设置较短的测试周期(如30秒)验证功能是否正常工作。
 - 
根据邮件服务器的负载情况,适当调整
autoexpunge_max_mails参数,避免一次性处理过多邮件影响服务器性能。 - 
对于大型邮件服务器,可以考虑使用 Dovecot 的元数据功能进行更精细的控制,但这需要额外的配置。
 
通过以上配置,Docker-Mailserver 可以自动清理过期邮件,既节省存储空间,又保持邮件系统的整洁高效。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00