Docker-Mailserver 中配置 Dovecot 自动清理垃圾邮件和回收站
在邮件服务器管理中,自动清理过期邮件是一个常见的需求。本文将介绍如何在 Docker-Mailserver 项目中配置 Dovecot 的自动清理功能,实现定时清理垃圾邮件(Junk)和回收站(Trash)中的邮件。
自动清理功能简介
Dovecot 提供了 autoexpunge 功能,可以自动删除指定时间前的邮件。这个功能特别适合用于:
- 垃圾邮件文件夹(Junk):通常垃圾邮件保留30天就足够了
- 回收站文件夹(Trash):用户删除的邮件可以保留90天
配置方法
在 Docker-Mailserver 中,我们可以通过修改 dovecot.cf 配置文件来实现自动清理功能。以下是完整的配置示例:
# 启用日期保存字段缓存
mail_always_cache_fields = date.save
# 配置命名空间和邮箱自动清理规则
namespace inbox {
mailbox Junk {
autoexpunge = 30d
autoexpunge_max_mails = 100
}
mailbox Trash {
autoexpunge = 90d
autoexpunge_max_mails = 100
}
}
配置参数说明
-
mail_always_cache_fields = date.save
这个设置确保 Dovecot 会缓存邮件的原始保存日期。如果不设置这个参数,Dovecot 可能会使用文件系统的创建时间(ctime)作为判断依据,导致自动清理功能失效。 -
autoexpunge = 30d
设置邮件在30天后自动删除。对于垃圾邮件文件夹(Junk),30天是一个合理的保留期限。 -
autoexpunge_max_mails = 100
设置每次自动清理最多处理100封邮件。这个参数可以防止一次性处理过多邮件导致服务器负载过高。
技术细节
日期保存机制
Dovecot 使用 date.saved 字段来判断邮件保存时间。如果没有正确配置缓存,Dovecot 可能会使用文件系统的 ctime 属性,这在容器环境中会导致问题,因为:
- 容器启动时可能会重置文件的 ctime
- 存储卷挂载时也可能影响 ctime
因此,必须配置 mail_always_cache_fields = date.save 来确保使用正确的保存时间。
验证配置
配置完成后,可以使用以下命令验证配置是否生效:
-
检查 Dovecot 配置:
doveconf在输出中应该能看到各个邮箱的自动清理配置。
-
检查邮件保存日期:
doveadm fetch -u 用户名 "date.saved any.field" 邮箱名这个命令可以查看邮件的实际保存日期。
最佳实践建议
-
对于生产环境,建议先设置较短的测试周期(如30秒)验证功能是否正常工作。
-
根据邮件服务器的负载情况,适当调整
autoexpunge_max_mails参数,避免一次性处理过多邮件影响服务器性能。 -
对于大型邮件服务器,可以考虑使用 Dovecot 的元数据功能进行更精细的控制,但这需要额外的配置。
通过以上配置,Docker-Mailserver 可以自动清理过期邮件,既节省存储空间,又保持邮件系统的整洁高效。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00