首页
/ Wenet项目中Conformer模型ONNX导出时的缓存处理问题分析

Wenet项目中Conformer模型ONNX导出时的缓存处理问题分析

2025-06-13 19:03:49作者:凤尚柏Louis

问题背景

在使用Wenet项目中的Conformer模型进行ONNX格式导出时,开发者遇到了一个关于缓存处理的错误。具体表现为在尝试将流式Conformer模型导出为ONNX格式时,系统抛出了"ValueError: too many values to unpack (expected 2)"的错误,指向了注意力机制中的缓存更新函数。

错误原因分析

这个问题的根源在于Wenet项目近期对缓存API进行了重构,但相关的ONNX导出脚本未能同步更新。在Conformer模型的注意力机制实现中,缓存处理模块发生了变化,导致原有的缓存解包方式不再适用。

具体来说,在transformer/attention.py文件中,_update_kv_and_cache函数试图将cache解包为key_cache和value_cache两个部分,但实际传入的cache结构已经改变,不再符合这个预期。

技术细节

Conformer模型作为一种结合了Transformer和CNN优势的混合架构,在流式处理时需要维护两种缓存:

  1. 注意力机制的键值缓存(key-value cache)
  2. CNN模块的缓存

在Wenet项目的更新中,缓存API被重构以支持更灵活的处理方式,但这一变更没有完全同步到ONNX导出脚本中。当使用export_onnx_gpu.py脚本进行导出时,脚本仍然按照旧的缓存结构进行处理,导致解包失败。

解决方案

要解决这个问题,需要根据新的缓存API调整ONNX导出脚本。主要修改点包括:

  1. 更新缓存处理逻辑,适配新的缓存结构
  2. 确保在导出过程中正确处理两种不同类型的缓存
  3. 验证修改后的导出脚本能够正确生成ONNX模型

对于开发者来说,可以参考项目最近的pull request中关于缓存API变更的部分,将这些变更应用到ONNX导出脚本中。同时,建议在修改后进行完整的识别测试,以验证导出模型的正确性。

总结

这个问题展示了在深度学习框架开发中保持各组件同步更新的重要性。当核心模块如缓存API发生变更时,需要全面检查所有依赖该模块的组件,包括模型导出工具。对于使用Wenet项目的开发者来说,理解这一变更有助于更好地处理类似问题,并为未来的模型导出工作提供参考。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8