Redisson中RScheduledExecutorService与Quarkus框架的优雅关闭问题分析
问题背景
在使用Redisson的RScheduledExecutorService与Quarkus框架集成时,开发者发现了一个影响应用关闭速度的问题。当在Quarkus应用中注册WorkerOptions到RScheduledExecutorService后,应用的关闭时间会显著延长至约10秒,而未注册WorkerOptions时关闭则能在1秒内完成。
技术细节
RScheduledExecutorService是Redisson提供的分布式调度执行器服务,它允许在Redis集群中执行定时任务。WorkerOptions则用于配置执行任务的worker参数,包括worker数量等。
在Quarkus框架中,当应用接收到关闭信号时,框架会触发ShutdownEvent,期望应用能快速释放资源并退出。然而,当RScheduledExecutorService注册了WorkerOptions后,这个关闭过程会被明显延迟。
问题原因分析
这种延迟行为可能有几个技术原因:
-
资源清理机制:Redisson可能在关闭时执行额外的清理工作,特别是当有活跃的worker时,需要确保所有任务被妥善处理。
-
连接释放:与Redis的连接可能需要更长时间来安全释放,特别是当有活跃任务或worker时。
-
超时设置:可能存在默认的超时设置,导致关闭过程等待某些操作完成。
解决方案探讨
目前官方建议的解决方案是在ShutdownEvent中显式调用RScheduledExecutorService.shutdown()方法。这种方法确实可以加速关闭过程,但会带来一个副作用:其他Redisson实例将无法再向该执行器提交新任务。
更理想的解决方案可能是引入一个unregisterWorkers()方法,它能够:
- 优雅地解除worker注册
- 保持执行器服务继续运行
- 允许其他实例继续提交任务
- 同时避免关闭延迟
最佳实践建议
对于当前版本的用户,可以采取以下临时方案:
- 在@ApplicationScoped bean中保持RScheduledExecutorService的单例实例
- 在ShutdownEvent中调用shutdown()方法
- 评估是否接受其他实例无法提交任务的限制
对于长期解决方案,建议关注Redisson项目关于unregisterWorkers()功能请求的进展。这个功能将提供更灵活的worker管理方式,同时保持快速的关闭速度。
总结
Redisson与Quarkus的集成提供了强大的分布式任务处理能力,但在关闭行为上需要注意这些细节。理解底层机制有助于开发者做出更合理的架构决策,平衡功能需求与系统响应性。随着Redisson功能的不断完善,这类集成问题有望得到更优雅的解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00