CleanRL项目中使用PPO连续动作算法录制视频的问题分析与解决
问题背景
在使用CleanRL项目中的PPO连续动作算法(ppo_continuous_action.py)时,用户尝试通过--capture-video参数录制训练过程中的视频,但遇到了一个与Pygame渲染相关的错误。错误信息显示size must be two numbers,表明在视频录制过程中,Pygame的smoothscale函数接收到了无效的尺寸参数。
错误分析
该问题主要发生在Gymnasium环境的视频录制环节。当启用视频录制功能时,系统会通过以下调用链尝试渲染环境画面:
- 视频录制器调用
env.render() - 经过多层wrapper调用后,最终到达Pendulum环境的渲染函数
- 在Pygame的
smoothscale函数处失败,因为传入的尺寸参数不符合要求
深入分析发现,这个问题与NumPy版本有关。当使用NumPy 2.0时,某些尺寸参数的传递方式发生了变化,导致Pygame无法正确解析。
解决方案
临时解决方案
用户最初提供了一个临时解决方案,通过重写Pygame的smoothscale函数来捕获异常并提供默认尺寸:
original_smoothscale = pygame.transform.smoothscale
def safe_smoothscale(surface, size, *args, **kwargs):
if not (isinstance(size, tuple) and len(size) == 2):
size = (640, 480) # 使用默认尺寸
try:
return original_smoothscale(surface, size, *args, **kwargs)
except TypeError:
return surface
pygame.transform.smoothscale = safe_smoothscale
这种方法虽然能解决问题,但属于临时性的修补方案。
推荐解决方案
更根本的解决方案是使用兼容的NumPy版本。CleanRL项目维护者确认,这个问题与NumPy 2.0的兼容性有关,建议降级到NumPy 1.24版本:
pip install numpy==1.24
这个方案更加稳定,不需要修改任何代码,且能确保整个CleanRL生态系统的兼容性。
技术背景
Gymnasium的视频录制机制
Gymnasium通过RecordVideo wrapper实现视频录制功能。当启用录制时,系统会在每个环境步骤中捕获当前帧,并使用Pygame或其他渲染后端将画面保存为视频。
NumPy版本兼容性问题
NumPy 2.0引入了一些重大变更,包括数组标量类型的处理方式。这些变更可能影响与Pygame等库的交互,特别是在尺寸参数传递方面。NumPy 1.24保持了更传统的数组处理方式,因此能更好地与现有的渲染管道兼容。
最佳实践建议
- 版本控制:在使用CleanRL时,建议严格按照项目推荐的依赖版本进行安装
- 环境隔离:使用虚拟环境管理不同项目的依赖,避免版本冲突
- 错误处理:对于关键的生产环境应用,可以考虑添加类似用户提供的防御性编程代码
- 持续更新:关注CleanRL项目的更新,及时获取官方修复方案
总结
在CleanRL项目中使用PPO连续动作算法录制视频时遇到的这个问题,展示了深度学习工具链中版本兼容性的重要性。通过理解问题的根源并选择合适的解决方案,用户可以顺利实现视频录制功能,同时保持系统的稳定性。对于类似问题,建议优先考虑官方推荐的依赖版本,而不是自行修补,以获得最佳的支持和稳定性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00