MMYOLO项目图片推理实践指南
2025-06-25 01:39:15作者:余洋婵Anita
前言
MMYOLO作为基于PyTorch的开源目标检测框架,提供了丰富的模型实现和便捷的推理工具。本文将详细介绍如何使用MMYOLO框架对单张图片进行目标检测推理,并解决实际应用中可能遇到的各种问题。
基础推理方法
MMYOLO提供了多种方式进行图片推理,最基础的方式是通过test.py脚本:
python tools/test.py 配置文件路径 模型权重路径 --show-dir 结果保存目录
这种方式主要用于验证集上的批量推理测试。对于单张图片的推理,MMYOLO提供了专门的demo工具。
单张图片推理实现
针对单张图片的推理,可以使用image-demo.py工具:
python projects/easydeploy/tools/image-demo.py \
待检测图片路径 \
配置文件路径 \
模型权重路径 \
--device cpu
需要注意的是,这里使用的模型权重需要是已经转换为ONNX格式的模型文件。这种方式的优势在于可以快速对任意图片进行检测,而不需要将图片放入验证集目录结构。
常见问题解决方案
1. 文本显示问题
在推理结果可视化过程中,可能会遇到文本显示过大或模糊的问题。这主要是由于OpenCV的putText函数参数设置不当导致的。可以通过调整以下参数优化显示效果:
cv2.putText(
bgr,
name,
(bbox[0], bbox[1] - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, # 字体大小
[225, 255, 255],
thickness=1 # 线条粗细
)
关键参数说明:
- 第四个参数控制字体大小,建议值0.3-0.8
- thickness控制线条粗细,通常设为1即可
- 第三个参数是文本位置坐标
- 第五个参数是文本颜色
2. 类别ID转名称
默认情况下,检测结果会显示类别ID数字。要显示更具可读性的类别名称,需要修改可视化代码,将类别ID映射为对应的名称字符串。这通常可以在配置文件的metainfo
部分找到类别名称定义。
3. 推理速度优化
如果遇到推理速度较慢的情况,可以考虑以下优化措施:
- 使用更高效的模型变体
- 将模型转换为TensorRT等优化格式
- 确保使用GPU进行推理
- 适当调整输入图片尺寸
进阶应用
对于生产环境部署,建议:
- 将模型转换为ONNX或TensorRT格式
- 使用C++接口进行部署以获得更好的性能
- 实现批量推理功能提高吞吐量
- 添加预处理和后处理优化
总结
MMYOLO提供了灵活多样的图片推理方式,从简单的测试脚本到专门的demo工具,可以满足不同场景的需求。通过合理调整可视化参数和优化推理流程,可以获得既美观又高效的检测结果。对于开发者来说,理解框架提供的各种工具及其参数配置,是充分发挥MMYOLO能力的关键。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44