MMYOLO项目图片推理实践指南
2025-06-25 01:33:06作者:余洋婵Anita
前言
MMYOLO作为基于PyTorch的开源目标检测框架,提供了丰富的模型实现和便捷的推理工具。本文将详细介绍如何使用MMYOLO框架对单张图片进行目标检测推理,并解决实际应用中可能遇到的各种问题。
基础推理方法
MMYOLO提供了多种方式进行图片推理,最基础的方式是通过test.py脚本:
python tools/test.py 配置文件路径 模型权重路径 --show-dir 结果保存目录
这种方式主要用于验证集上的批量推理测试。对于单张图片的推理,MMYOLO提供了专门的demo工具。
单张图片推理实现
针对单张图片的推理,可以使用image-demo.py工具:
python projects/easydeploy/tools/image-demo.py \
待检测图片路径 \
配置文件路径 \
模型权重路径 \
--device cpu
需要注意的是,这里使用的模型权重需要是已经转换为ONNX格式的模型文件。这种方式的优势在于可以快速对任意图片进行检测,而不需要将图片放入验证集目录结构。
常见问题解决方案
1. 文本显示问题
在推理结果可视化过程中,可能会遇到文本显示过大或模糊的问题。这主要是由于OpenCV的putText函数参数设置不当导致的。可以通过调整以下参数优化显示效果:
cv2.putText(
bgr,
name,
(bbox[0], bbox[1] - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, # 字体大小
[225, 255, 255],
thickness=1 # 线条粗细
)
关键参数说明:
- 第四个参数控制字体大小,建议值0.3-0.8
- thickness控制线条粗细,通常设为1即可
- 第三个参数是文本位置坐标
- 第五个参数是文本颜色
2. 类别ID转名称
默认情况下,检测结果会显示类别ID数字。要显示更具可读性的类别名称,需要修改可视化代码,将类别ID映射为对应的名称字符串。这通常可以在配置文件的metainfo部分找到类别名称定义。
3. 推理速度优化
如果遇到推理速度较慢的情况,可以考虑以下优化措施:
- 使用更高效的模型变体
- 将模型转换为TensorRT等优化格式
- 确保使用GPU进行推理
- 适当调整输入图片尺寸
进阶应用
对于生产环境部署,建议:
- 将模型转换为ONNX或TensorRT格式
- 使用C++接口进行部署以获得更好的性能
- 实现批量推理功能提高吞吐量
- 添加预处理和后处理优化
总结
MMYOLO提供了灵活多样的图片推理方式,从简单的测试脚本到专门的demo工具,可以满足不同场景的需求。通过合理调整可视化参数和优化推理流程,可以获得既美观又高效的检测结果。对于开发者来说,理解框架提供的各种工具及其参数配置,是充分发挥MMYOLO能力的关键。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355