Checkov自定义策略在Azure DevOps测试结果中不显示的排查指南
问题背景
在使用Checkov进行Terraform AKS集群扫描时,用户发现自定义策略的扫描结果没有出现在Azure DevOps的测试结果中。虽然内置扫描能够正常显示,但自定义策略(无论是YAML还是Python编写)的结果却缺失了。
自定义策略实现分析
以用户提供的Kubernetes特权升级检查为例,这是一个典型的Checkov自定义策略实现:
from checkov.common.models.enums import CheckCategories, CheckResult
from checkov.kubernetes.checks.resource.base_container_check import BaseK8sContainerCheck
class KubernetesNoPrivilegeEscalationCheck(BaseK8sContainerCheck):
def __init__(self):
name = "确保Kubernetes容器不允许特权升级"
id = "CUSTOM_K8S_6"
supported_resources = [
"kubernetes_pod",
"kubernetes_deployment",
"kubernetes_stateful_set",
"kubernetes_daemonset",
"kubernetes_replica_set"
]
categories = [CheckCategories.KUBERNETES]
super().__init__(name=name, id=id, categories=categories, supported_entities=supported_resources)
def scan_container_conf(self, conf, metadata):
if "spec" in conf:
containers = conf["spec"].get("containers", [])
for container in containers:
security_context = container.get("securityContext", {})
if security_context.get("allowPrivilegeEscalation", True):
return CheckResult.FAILED
return CheckResult.PASSED
return CheckResult.PASSED
这个检查逻辑是正确的,它继承自BaseK8sContainerCheck基类,并实现了scan_container_conf方法来检查容器配置中是否允许特权升级。
常见排查方向
-
外部检查目录参数缺失 在运行Checkov扫描时,必须使用
--external-checks-dir参数指定自定义策略所在的目录。这是最常见的问题原因。 -
策略文件结构问题 自定义策略需要正确的文件结构:
custom_checks/ └── kubernetes/ ├── __init__.py └── kubernetes_no_privilege_escalation_check.py -
Azure DevOps结果解析问题 Azure DevOps可能对自定义策略的ID或输出格式有特殊要求。确保自定义策略ID以"CUSTOM_"开头是个好习惯。
-
策略加载验证 可以在本地先运行扫描并添加
--verbose参数,查看自定义策略是否被正确加载。
解决方案建议
-
明确指定外部检查目录
checkov -d . --external-checks-dir ./custom_checks -
验证策略加载 添加
--verbose参数运行,确认输出中是否包含类似信息:Loading external checks from /path/to/custom_checks Found external check: CUSTOM_K8S_6 -
检查策略注册 确保每个自定义策略文件底部都有实例化代码:
scanner = KubernetesNoPrivilegeEscalationCheck() -
Azure DevOps特定配置 检查Azure DevOps任务配置中是否启用了自定义策略结果收集。可能需要特定的输出格式或结果处理器。
深入技术细节
Checkov的自定义策略机制通过插件架构实现。当使用--external-checks-dir时,Checkov会:
- 扫描指定目录下的Python文件
- 查找所有继承自BaseCheck的类
- 自动注册这些检查到相应的检查注册表中
- 在执行扫描时调用这些检查
对于Kubernetes资源检查,还需要确保:
- 继承正确的基类(如BaseK8sContainerCheck)
- 实现适当的扫描方法(如scan_container_conf)
- 正确定义supported_resources列表
最佳实践
- 为自定义策略使用清晰的前缀(如CUSTOM_)
- 保持策略文件的模块化结构
- 在本地验证后再集成到CI/CD流程
- 考虑为自定义策略编写单元测试
- 记录每个自定义策略的业务需求和实现细节
通过以上方法,可以确保自定义策略不仅能够正确执行,还能在Azure DevOps等CI/CD平台上正确显示结果。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00