Checkov自定义策略在Azure DevOps测试结果中不显示的排查指南
问题背景
在使用Checkov进行Terraform AKS集群扫描时,用户发现自定义策略的扫描结果没有出现在Azure DevOps的测试结果中。虽然内置扫描能够正常显示,但自定义策略(无论是YAML还是Python编写)的结果却缺失了。
自定义策略实现分析
以用户提供的Kubernetes特权升级检查为例,这是一个典型的Checkov自定义策略实现:
from checkov.common.models.enums import CheckCategories, CheckResult
from checkov.kubernetes.checks.resource.base_container_check import BaseK8sContainerCheck
class KubernetesNoPrivilegeEscalationCheck(BaseK8sContainerCheck):
def __init__(self):
name = "确保Kubernetes容器不允许特权升级"
id = "CUSTOM_K8S_6"
supported_resources = [
"kubernetes_pod",
"kubernetes_deployment",
"kubernetes_stateful_set",
"kubernetes_daemonset",
"kubernetes_replica_set"
]
categories = [CheckCategories.KUBERNETES]
super().__init__(name=name, id=id, categories=categories, supported_entities=supported_resources)
def scan_container_conf(self, conf, metadata):
if "spec" in conf:
containers = conf["spec"].get("containers", [])
for container in containers:
security_context = container.get("securityContext", {})
if security_context.get("allowPrivilegeEscalation", True):
return CheckResult.FAILED
return CheckResult.PASSED
return CheckResult.PASSED
这个检查逻辑是正确的,它继承自BaseK8sContainerCheck基类,并实现了scan_container_conf方法来检查容器配置中是否允许特权升级。
常见排查方向
-
外部检查目录参数缺失 在运行Checkov扫描时,必须使用
--external-checks-dir参数指定自定义策略所在的目录。这是最常见的问题原因。 -
策略文件结构问题 自定义策略需要正确的文件结构:
custom_checks/ └── kubernetes/ ├── __init__.py └── kubernetes_no_privilege_escalation_check.py -
Azure DevOps结果解析问题 Azure DevOps可能对自定义策略的ID或输出格式有特殊要求。确保自定义策略ID以"CUSTOM_"开头是个好习惯。
-
策略加载验证 可以在本地先运行扫描并添加
--verbose参数,查看自定义策略是否被正确加载。
解决方案建议
-
明确指定外部检查目录
checkov -d . --external-checks-dir ./custom_checks -
验证策略加载 添加
--verbose参数运行,确认输出中是否包含类似信息:Loading external checks from /path/to/custom_checks Found external check: CUSTOM_K8S_6 -
检查策略注册 确保每个自定义策略文件底部都有实例化代码:
scanner = KubernetesNoPrivilegeEscalationCheck() -
Azure DevOps特定配置 检查Azure DevOps任务配置中是否启用了自定义策略结果收集。可能需要特定的输出格式或结果处理器。
深入技术细节
Checkov的自定义策略机制通过插件架构实现。当使用--external-checks-dir时,Checkov会:
- 扫描指定目录下的Python文件
- 查找所有继承自BaseCheck的类
- 自动注册这些检查到相应的检查注册表中
- 在执行扫描时调用这些检查
对于Kubernetes资源检查,还需要确保:
- 继承正确的基类(如BaseK8sContainerCheck)
- 实现适当的扫描方法(如scan_container_conf)
- 正确定义supported_resources列表
最佳实践
- 为自定义策略使用清晰的前缀(如CUSTOM_)
- 保持策略文件的模块化结构
- 在本地验证后再集成到CI/CD流程
- 考虑为自定义策略编写单元测试
- 记录每个自定义策略的业务需求和实现细节
通过以上方法,可以确保自定义策略不仅能够正确执行,还能在Azure DevOps等CI/CD平台上正确显示结果。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00