Silverbullet项目中fetch API在客户端与服务端的差异问题解析
在Silverbullet项目开发过程中,开发者遇到了一个关于fetch API行为差异的有趣问题。本文将深入分析该问题的技术背景、解决方案以及相关的最佳实践建议。
问题现象
当在Silverbullet插件中使用fetch发起POST请求时,出现了客户端与服务端行为不一致的情况:
- 客户端浏览器中:请求正常发送,body参数正确传递
- 服务端运行时:body参数神秘消失,请求不完整
通过mitmproxy工具进行抓包分析,确认了客户端请求包含body而服务端请求确实丢失了body参数。
技术背景
Silverbullet项目为了实现某些功能,对原生的fetch API进行了monkey patch处理,包括对请求体进行base64编码/解码的转换逻辑。理论上这些处理对开发者应该是透明的,但在实际运行中却出现了问题。
解决方案
项目维护者提供了两种解决思路:
-
使用nativeFetch替代
项目提供了专门的nativeFetch实现,它绕过了monkey patch处理:import "$sb/lib/native_fetch.ts"; const response = await nativeFetch(url, options);这种方式在测试中表现良好,适用于大多数LLM服务提供商(如OpenAI)已正确设置CORS头的情况。
-
服务端函数代理
对于不支持CORS的API(如Anthropic),可以采用服务端代理方案:- 创建带有
env: server标记的插件函数 - 在函数内执行fetch操作
- 通过
system.invokeFunction从客户端调用该函数
- 创建带有
深入分析
monkey patch的问题
项目中的monkey patch机制虽然旨在提供额外功能,但也带来了以下挑战:
- 增加了调试难度
- 可能导致不可预期的行为差异
- 对某些特殊请求处理不够完善
流式响应处理
值得注意的是,当使用SSE.js等库处理流式响应时,它们会直接使用XMLHttpRequest而非fetch API,这完全绕过了monkey patch机制。
最佳实践建议
-
优先使用nativeFetch
对于常规API调用,特别是与LLM服务交互时,nativeFetch是更可靠的选择。 -
服务端代理模式
当遇到CORS限制时,采用服务端函数代理是可行的解决方案,但需要注意:- 同步模式下无法工作
- 会增加一定的网络延迟
-
考虑移除monkey patch
长期来看,简化fetch处理逻辑可能提高系统稳定性,但这需要评估对现有功能的影响。
总结
Silverbullet项目中fetch API的差异问题揭示了底层封装可能带来的复杂性。通过nativeFetch和服务端代理两种方案,开发者可以根据具体场景选择最适合的解决方案。这也提醒我们在框架设计中,需要权衡功能增强与API透明性之间的关系。
随着项目的演进,这个问题在v2版本中已经得到统一处理,为开发者提供了更一致的体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00