Silverbullet项目中fetch API在客户端与服务端的差异问题解析
在Silverbullet项目开发过程中,开发者遇到了一个关于fetch API行为差异的有趣问题。本文将深入分析该问题的技术背景、解决方案以及相关的最佳实践建议。
问题现象
当在Silverbullet插件中使用fetch发起POST请求时,出现了客户端与服务端行为不一致的情况:
- 客户端浏览器中:请求正常发送,body参数正确传递
- 服务端运行时:body参数神秘消失,请求不完整
通过mitmproxy工具进行抓包分析,确认了客户端请求包含body而服务端请求确实丢失了body参数。
技术背景
Silverbullet项目为了实现某些功能,对原生的fetch API进行了monkey patch处理,包括对请求体进行base64编码/解码的转换逻辑。理论上这些处理对开发者应该是透明的,但在实际运行中却出现了问题。
解决方案
项目维护者提供了两种解决思路:
-
使用nativeFetch替代
项目提供了专门的nativeFetch实现,它绕过了monkey patch处理:import "$sb/lib/native_fetch.ts"; const response = await nativeFetch(url, options);这种方式在测试中表现良好,适用于大多数LLM服务提供商(如OpenAI)已正确设置CORS头的情况。
-
服务端函数代理
对于不支持CORS的API(如Anthropic),可以采用服务端代理方案:- 创建带有
env: server标记的插件函数 - 在函数内执行fetch操作
- 通过
system.invokeFunction从客户端调用该函数
- 创建带有
深入分析
monkey patch的问题
项目中的monkey patch机制虽然旨在提供额外功能,但也带来了以下挑战:
- 增加了调试难度
- 可能导致不可预期的行为差异
- 对某些特殊请求处理不够完善
流式响应处理
值得注意的是,当使用SSE.js等库处理流式响应时,它们会直接使用XMLHttpRequest而非fetch API,这完全绕过了monkey patch机制。
最佳实践建议
-
优先使用nativeFetch
对于常规API调用,特别是与LLM服务交互时,nativeFetch是更可靠的选择。 -
服务端代理模式
当遇到CORS限制时,采用服务端函数代理是可行的解决方案,但需要注意:- 同步模式下无法工作
- 会增加一定的网络延迟
-
考虑移除monkey patch
长期来看,简化fetch处理逻辑可能提高系统稳定性,但这需要评估对现有功能的影响。
总结
Silverbullet项目中fetch API的差异问题揭示了底层封装可能带来的复杂性。通过nativeFetch和服务端代理两种方案,开发者可以根据具体场景选择最适合的解决方案。这也提醒我们在框架设计中,需要权衡功能增强与API透明性之间的关系。
随着项目的演进,这个问题在v2版本中已经得到统一处理,为开发者提供了更一致的体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00