Riverpod中同步访问Future/Stream Provider缓存数据的最佳实践
2025-06-02 08:33:05作者:薛曦旖Francesca
背景介绍
在使用Riverpod状态管理库时,我们经常会遇到需要处理异步数据的情况。特别是当一个Provider依赖于另一个异步Provider的数据时,如何高效地处理这种依赖关系成为了一个重要话题。
问题核心
当Provider B依赖于Provider A的异步数据时,我们面临一个选择:
- 如果Provider A已经缓存了数据,我们可以直接同步获取
- 如果Provider A还没有数据,则需要异步等待
理想情况下,我们希望能够根据当前数据状态智能地选择同步或异步方式,而不是强制使用异步方式。
解决方案
1. 同步检查数据状态
我们可以通过检查AsyncValue的状态来判断数据是否已经缓存:
final hasResult = read(provider.select((v) => v.hasValue || v.hasError));
2. 智能同步/异步获取
基于检查结果,我们可以决定是同步返回缓存数据还是异步等待:
if (!hasResult) {
return watch(provider.future); // 异步等待
} else {
return watch(provider).requireValue; // 同步返回
}
3. 创建扩展方法
为了便于复用,我们可以将这些逻辑封装成扩展方法:
extension SyncWatch on Ref {
FutureOr<T> streamSyncWatch<T>(StreamProvider<T> provider) {
final hasResult = read(provider.select((v) => v.hasValue || v.hasError));
if (!hasResult) return watch(provider.future);
return watch(provider).requireValue;
}
FutureOr<T> futureSyncWatch<T>(FutureProvider<T> provider) {
final hasResult = read(provider.select((v) => v.hasValue || v.hasError));
if (!hasResult) return watch(provider.future);
return watch(provider).requireValue;
}
}
4. 处理FutureOr返回值
为了更方便地处理FutureOr类型的返回值,我们可以创建一个扩展方法:
extension Then<T> on FutureOr<T> {
FutureOr<R> then<R>(
FutureOr<R> Function(T value) onValue,
) {
if (this is T) {
return onValue(this as T);
} else {
return (() async => onValue(await this))();
}
}
}
实际应用示例
@riverpod
Future<ModelA> providerA(ProviderARef ref) async {
return await something();
}
@riverpod
FutureOr<ModelB> providerB(ProviderBRef ref) {
final mapper = ref.read(mapperProvider);
final rawDataValue = ref.futureSyncWatch(providerAProvider);
return rawDataValue.then((rawData) => mapper(rawData));
}
性能考量
这种方法的主要优势在于:
- 当数据已经缓存时,可以避免不必要的异步操作
- 减少了不必要的重建,提高了性能
- 保持了代码的简洁性和可读性
注意事项
- 使用
read而不是watch来检查数据状态,避免不必要的重建 - 对于StreamProvider和FutureProvider需要分别处理
- 注意错误处理,确保在数据不可用时能够正确处理
总结
通过这种智能同步/异步获取数据的方式,我们可以在Riverpod中实现更高效的Provider间依赖关系处理。这种方法既保留了异步操作的灵活性,又能在数据可用时提供同步访问的性能优势。
未来随着Riverpod的更新,可能会有更优雅的解决方案出现,但目前这种方法已经能够很好地解决实际问题。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443