Oppia项目中故事章节必备技能显示问题的分析与修复
问题背景
在开源在线学习平台Oppia中,管理员在编辑故事章节时遇到了一个显示问题:当某个必备技能(prerequisite skill)已经被分配到其他主题(topic)时,在编辑器中该技能描述会显示为空白。这个问题影响了管理员对故事章节必备技能的识别和管理。
问题现象
具体表现为:
- 在故事章节编辑页面添加必备技能
- 保存草稿后刷新页面
- 已添加的必备技能描述不显示,仅显示空白
技术分析
经过深入分析,发现问题根源在于前端组件使用了错误的技能数据源。当前实现存在以下关键问题:
-
错误的数据源:代码中使用了
skillSummaries数组来构建技能ID与描述的映射,但这个数组实际上包含的是主题本身的必备技能和诊断测试技能,而非当前故事章节的必备技能。 -
正确的数据路径:实际需要的数据位于
storyObj.story_contents.nodes[0].prerequisite_skill_ids路径下。 -
已有但未使用的功能:系统中已经存在一个
getPrerequisiteSkillsDescription()函数,它能够正确处理必备技能的获取和映射,但未被调用。
解决方案
修复方案包括以下步骤:
-
获取当前节点:首先需要识别用户正在编辑的具体故事节点。
-
使用正确的技能ID集合:通过
this.story.getStoryContents().getNodes()[0].getPrerequisiteSkillIds()获取正确的必备技能ID列表。 -
构建技能描述映射:利用现有的
getPrerequisiteSkillsDescription()函数,通过技能后端API获取技能描述并构建映射关系。 -
扩展修复范围:类似的问题也存在于"已获得技能"(acquired skills)的显示中,采用相同的修复思路一并解决。
实现细节
核心修复涉及修改core/templates/pages/story-editor-page/editor-tab/story-node-editor.component.html文件中的逻辑:
// 替换原有的错误实现
for (let idx in skillSummaries) {
this.skillIdToSummaryMap[skillSummaries[idx].id] =
skillSummaries[idx].description;
}
// 使用正确的函数
this.getPrerequisiteSkillsDescription();
测试验证
修复后进行了全面测试,验证内容包括:
- 添加已被其他主题使用的必备技能
- 保存草稿后刷新页面
- 确认技能描述正常显示
- 验证"已获得技能"同样修复正常
测试结果表明,修复后系统能够正确显示所有必备技能和已获得技能的描述,无论这些技能是否已被分配到其他主题。
总结
这个问题的解决不仅修复了功能缺陷,还提高了代码的健壮性。通过重用已有但未被充分利用的函数,避免了重复代码的产生,同时也为类似的数据显示问题提供了参考解决方案。修复后的系统为管理员提供了更可靠的故事章节编辑体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00