SlateDB对象存储中的SST文件压缩技术解析
2025-07-06 05:27:05作者:田桥桑Industrious
背景与挑战
SlateDB作为一个基于云存储的键值数据库,面临着如何高效管理存储在对象存储(如S3)上的SST文件的挑战。与传统本地存储的LSM树实现不同,SlateDB需要特别考虑云环境下的API调用成本、网络延迟以及存储特性。
设计考量
在SlateDB的架构设计中,SST文件压缩策略需要平衡多个关键因素:
- 写放大:由于云存储没有按字节计费,主要成本来自API调用次数,因此写放大相对不那么关键
- 读放大:查询性能至关重要,需要尽量减少每次查询需要检查的SST文件数量
- 空间放大:虽然云存储空间成本较低,但过多的空间占用会影响缓存效率和恢复时间
- 元数据管理:需要高效跟踪大量SST文件的元数据
技术方案演进
项目团队经过深入讨论,最终确定了分阶段实施的压缩策略:
初始阶段:简单分层压缩
首版实现采用基本的分层压缩策略:
- L0层包含多个小SST文件(可能只有少量键值对)
- 定期将所有L0文件合并为一个新的有序运行(sorted run)
- 这种实现简单直接,便于快速验证概念
中期优化:混合压缩策略
基于Dostoevsky论文中的"惰性分层"(Lazy Leveling)理念:
- 除最大层外,其他层采用分层压缩
- 最大层采用层级压缩,保持单一有序运行
- 这种混合策略平衡了写放大和空间放大
长期规划:可插拔压缩策略
最终目标是支持多种可插拔的压缩策略:
- 通用压缩(Universal Compaction)
- 大小分层压缩(Size-tiered Compaction)
- 增量压缩(Incremental Compaction)
- 允许用户根据工作负载特性选择最适合的策略
关键技术细节
内存管理优化
为避免频繁访问对象存储,SlateDB采用多层缓存:
- 内存中的MemTable
- 合并后的内存表(包含多个WAL SST的数据)
- 本地磁盘缓存
- 最终回落到对象存储
压缩调度
考虑将压缩任务分布到不同计算资源:
- 高频小压缩由长期运行的轻量级节点处理
- 低频大压缩由按需启动的重量级节点处理
- 这种设计充分利用云计算的弹性优势
过滤器优化
采用Monkey论文中的技术,在不同层级间智能分配Bloom过滤器内存预算:
- 为较小层级分配更多bits/key
- 较大层级可容忍稍高的误报率
- 在保持总体低误报率的同时减少内存占用
性能考量
SlateDB特别关注云环境下的性能特征:
- 通过减少S3 API调用降低运营成本
- 利用本地缓存避免S3读取的高延迟(100ms级)
- 优化恢复时间,避免处理过多小SST文件
- 平衡压缩频率与查询性能
总结
SlateDB的SST压缩设计展现了云原生数据库的独特思考。不同于传统LSM实现过度优化写放大,SlateDB更关注云环境下的实际运营成本和性能表现。通过分阶段实现和可插拔架构,项目既保证了初期简单性,又为未来优化留下充足空间。这种平衡务实与前瞻的设计理念,值得其他云原生存储系统借鉴。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K