Polaris项目中的工作流(Workflow)概念解析
2025-06-10 04:06:44作者:何将鹤
什么是工作流?
在Polaris项目中,工作流(Workflow)是一个用于描述和封装一系列相互连接的构建器(Builder)拓扑结构的规范容器,这些构建器共同协作最终生成目标数据。工作流是Polaris中实现复杂业务流程的核心抽象概念。
工作流的核心组成
一个完整的工作流包含两个关键元数据:
- 构建器列表(Builders):构成工作流的一系列工作单元,每个构建器负责处理特定任务并产生输出数据
- 目标数据(Target Data):工作流最终要生成的数据名称,一旦产生此数据,工作流即告完成(但可以通过输入新数据重新激活)
工作流接口定义
在Polaris中,所有工作流都必须实现IWorkflow接口:
type IWorkflow interface {
GetWorkflowMeta() WorkflowMeta
}
这个接口要求工作流必须能够返回其元数据信息,包括构建器列表和目标数据定义。
实际案例:出租车行程工作流
为了更好地理解工作流的概念,让我们看一个出租车行程的示例。在这个场景中,整个行程可以被分解为多个构建器:
- 用户发起请求
- 司机匹配
- 司机到达上车点
- 行程开始
- 司机到达目的地
- 用户支付
- 行程结束
对应的Go代码实现如下:
type CabRideWorkflow struct {}
func (cr CabRideWorkflow) GetWorkflowMeta() WorkflowMeta {
return WorkflowMeta{
Builders: []IBuilder{
UserInitiation{},
CabbieMatching{},
CabbieArrivalAtSource{},
CabDepartureFromSource{},
CabArrivalAtDest{},
UserPayment{},
RideEnds{},
},
TargetData: WorkflowTerminated{},
}
}
虽然Polaris能够自动确定构建器的执行顺序,但为了代码可读性,建议开发者按照业务逻辑顺序排列构建器。
工作流的注册与执行
注册工作流
在使用工作流前,需要先进行注册:
polaris.RegisterWorkflow(workflowKey, workflow)
执行工作流
Polaris提供了两种工作流执行方式:
- 顺序执行(Sequential):按顺序依次执行构建器
- 并行执行(Parallel):并发执行构建器(注意这不保证真正的并行)
执行器(Executor)的使用示例:
executor := polaris.Executor{
Before: func(builder reflect.Type, delta []IData) {
fmt.Printf("Builder %s is about to be run with new data %v\n", builder, delta)
},
After: func(builder reflect.Type, produced IData) {
fmt.Printf("Builder %s produced %s\n", builder, produced)
}
}
// 顺序执行
response, err := executor.Sequential(workflowKey, workflowId, dataDelta)
// 并行执行
response, err := executor.Parallel(workflowKey, workflowId, dataDelta)
执行器还支持在构建器执行前后添加回调函数,便于监控和调试。
工作流设计的最佳实践
- 单一职责原则:每个构建器应只负责一项明确的任务
- 合理的粒度:构建器的划分不宜过大也不宜过小
- 明确的数据依赖:确保构建器之间的数据依赖关系清晰
- 错误处理:考虑工作流执行过程中可能出现的异常情况
- 可观测性:利用执行器的回调函数添加日志和监控
通过合理设计工作流,开发者可以在Polaris中构建出清晰、可维护且高效的业务流程。工作流机制使得复杂业务逻辑的编排变得简单直观,同时保持了足够的灵活性来应对各种业务场景。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
暂无简介
Dart
760
182
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
569
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
160
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
169
53
Ascend Extension for PyTorch
Python
321
372
React Native鸿蒙化仓库
JavaScript
301
347