Polaris项目中的工作流(Workflow)概念解析
2025-06-10 13:45:16作者:何将鹤
什么是工作流?
在Polaris项目中,工作流(Workflow)是一个用于描述和封装一系列相互连接的构建器(Builder)拓扑结构的规范容器,这些构建器共同协作最终生成目标数据。工作流是Polaris中实现复杂业务流程的核心抽象概念。
工作流的核心组成
一个完整的工作流包含两个关键元数据:
- 构建器列表(Builders):构成工作流的一系列工作单元,每个构建器负责处理特定任务并产生输出数据
- 目标数据(Target Data):工作流最终要生成的数据名称,一旦产生此数据,工作流即告完成(但可以通过输入新数据重新激活)
工作流接口定义
在Polaris中,所有工作流都必须实现IWorkflow接口:
type IWorkflow interface {
GetWorkflowMeta() WorkflowMeta
}
这个接口要求工作流必须能够返回其元数据信息,包括构建器列表和目标数据定义。
实际案例:出租车行程工作流
为了更好地理解工作流的概念,让我们看一个出租车行程的示例。在这个场景中,整个行程可以被分解为多个构建器:
- 用户发起请求
- 司机匹配
- 司机到达上车点
- 行程开始
- 司机到达目的地
- 用户支付
- 行程结束
对应的Go代码实现如下:
type CabRideWorkflow struct {}
func (cr CabRideWorkflow) GetWorkflowMeta() WorkflowMeta {
return WorkflowMeta{
Builders: []IBuilder{
UserInitiation{},
CabbieMatching{},
CabbieArrivalAtSource{},
CabDepartureFromSource{},
CabArrivalAtDest{},
UserPayment{},
RideEnds{},
},
TargetData: WorkflowTerminated{},
}
}
虽然Polaris能够自动确定构建器的执行顺序,但为了代码可读性,建议开发者按照业务逻辑顺序排列构建器。
工作流的注册与执行
注册工作流
在使用工作流前,需要先进行注册:
polaris.RegisterWorkflow(workflowKey, workflow)
执行工作流
Polaris提供了两种工作流执行方式:
- 顺序执行(Sequential):按顺序依次执行构建器
- 并行执行(Parallel):并发执行构建器(注意这不保证真正的并行)
执行器(Executor)的使用示例:
executor := polaris.Executor{
Before: func(builder reflect.Type, delta []IData) {
fmt.Printf("Builder %s is about to be run with new data %v\n", builder, delta)
},
After: func(builder reflect.Type, produced IData) {
fmt.Printf("Builder %s produced %s\n", builder, produced)
}
}
// 顺序执行
response, err := executor.Sequential(workflowKey, workflowId, dataDelta)
// 并行执行
response, err := executor.Parallel(workflowKey, workflowId, dataDelta)
执行器还支持在构建器执行前后添加回调函数,便于监控和调试。
工作流设计的最佳实践
- 单一职责原则:每个构建器应只负责一项明确的任务
- 合理的粒度:构建器的划分不宜过大也不宜过小
- 明确的数据依赖:确保构建器之间的数据依赖关系清晰
- 错误处理:考虑工作流执行过程中可能出现的异常情况
- 可观测性:利用执行器的回调函数添加日志和监控
通过合理设计工作流,开发者可以在Polaris中构建出清晰、可维护且高效的业务流程。工作流机制使得复杂业务逻辑的编排变得简单直观,同时保持了足够的灵活性来应对各种业务场景。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92